You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
658 lines
31 KiB
658 lines
31 KiB
2 years ago
|
|
||
|
*****************
|
||
|
* O R C A *
|
||
|
*****************
|
||
|
|
||
|
#,
|
||
|
###
|
||
|
####
|
||
|
#####
|
||
|
######
|
||
|
########,
|
||
|
,,################,,,,,
|
||
|
,,#################################,,
|
||
|
,,##########################################,,
|
||
|
,#########################################, ''#####,
|
||
|
,#############################################,, '####,
|
||
|
,##################################################,,,,####,
|
||
|
,###########'''' ''''###############################
|
||
|
,#####'' ,,,,##########,,,, '''####''' '####
|
||
|
,##' ,,,,###########################,,, '##
|
||
|
' ,,###'''' '''############,,,
|
||
|
,,##'' '''############,,,, ,,,,,,###''
|
||
|
,#'' '''#######################'''
|
||
|
' ''''####''''
|
||
|
,#######, #######, ,#######, ##
|
||
|
,#' '#, ## ## ,#' '#, #''# ###### ,####,
|
||
|
## ## ## ,#' ## #' '# # #' '#
|
||
|
## ## ####### ## ,######, #####, # #
|
||
|
'#, ,#' ## ## '#, ,#' ,# #, ## #, ,#
|
||
|
'#######' ## ## '#######' #' '# #####' # '####'
|
||
|
|
||
|
|
||
|
|
||
|
#######################################################
|
||
|
# -***- #
|
||
|
# Department of theory and spectroscopy #
|
||
|
# Directorship and core code : Frank Neese #
|
||
|
# Max Planck Institute fuer Kohlenforschung #
|
||
|
# Kaiser Wilhelm Platz 1 #
|
||
|
# D-45470 Muelheim/Ruhr #
|
||
|
# Germany #
|
||
|
# #
|
||
|
# All rights reserved #
|
||
|
# -***- #
|
||
|
#######################################################
|
||
|
|
||
|
|
||
|
Program Version 5.0.2 - RELEASE -
|
||
|
|
||
|
|
||
|
With contributions from (in alphabetic order):
|
||
|
Daniel Aravena : Magnetic Suceptibility
|
||
|
Michael Atanasov : Ab Initio Ligand Field Theory (pilot matlab implementation)
|
||
|
Alexander A. Auer : GIAO ZORA, VPT2 properties, NMR spectrum
|
||
|
Ute Becker : Parallelization
|
||
|
Giovanni Bistoni : ED, misc. LED, open-shell LED, HFLD
|
||
|
Martin Brehm : Molecular dynamics
|
||
|
Dmytro Bykov : SCF Hessian
|
||
|
Vijay G. Chilkuri : MRCI spin determinant printing, contributions to CSF-ICE
|
||
|
Dipayan Datta : RHF DLPNO-CCSD density
|
||
|
Achintya Kumar Dutta : EOM-CC, STEOM-CC
|
||
|
Dmitry Ganyushin : Spin-Orbit,Spin-Spin,Magnetic field MRCI
|
||
|
Miquel Garcia : C-PCM and meta-GGA Hessian, CC/C-PCM, Gaussian charge scheme
|
||
|
Yang Guo : DLPNO-NEVPT2, F12-NEVPT2, CIM, IAO-localization
|
||
|
Andreas Hansen : Spin unrestricted coupled pair/coupled cluster methods
|
||
|
Benjamin Helmich-Paris : MC-RPA, TRAH-SCF, COSX integrals
|
||
|
Lee Huntington : MR-EOM, pCC
|
||
|
Robert Izsak : Overlap fitted RIJCOSX, COSX-SCS-MP3, EOM
|
||
|
Marcus Kettner : VPT2
|
||
|
Christian Kollmar : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density, CASPT2, CASPT2-K
|
||
|
Simone Kossmann : Meta GGA functionals, TD-DFT gradient, OOMP2, MP2 Hessian
|
||
|
Martin Krupicka : Initial AUTO-CI
|
||
|
Lucas Lang : DCDCAS
|
||
|
Marvin Lechner : AUTO-CI (C++ implementation), FIC-MRCC
|
||
|
Dagmar Lenk : GEPOL surface, SMD
|
||
|
Dimitrios Liakos : Extrapolation schemes; Compound Job, initial MDCI parallelization
|
||
|
Dimitrios Manganas : Further ROCIS development; embedding schemes
|
||
|
Dimitrios Pantazis : SARC Basis sets
|
||
|
Anastasios Papadopoulos: AUTO-CI, single reference methods and gradients
|
||
|
Taras Petrenko : DFT Hessian,TD-DFT gradient, ASA, ECA, R-Raman, ABS, FL, XAS/XES, NRVS
|
||
|
Peter Pinski : DLPNO-MP2, DLPNO-MP2 Gradient
|
||
|
Christoph Reimann : Effective Core Potentials
|
||
|
Marius Retegan : Local ZFS, SOC
|
||
|
Christoph Riplinger : Optimizer, TS searches, QM/MM, DLPNO-CCSD(T), (RO)-DLPNO pert. Triples
|
||
|
Tobias Risthaus : Range-separated hybrids, TD-DFT gradient, RPA, STAB
|
||
|
Michael Roemelt : Original ROCIS implementation
|
||
|
Masaaki Saitow : Open-shell DLPNO-CCSD energy and density
|
||
|
Barbara Sandhoefer : DKH picture change effects
|
||
|
Avijit Sen : IP-ROCIS
|
||
|
Kantharuban Sivalingam : CASSCF convergence, NEVPT2, FIC-MRCI
|
||
|
Bernardo de Souza : ESD, SOC TD-DFT
|
||
|
Georgi Stoychev : AutoAux, RI-MP2 NMR, DLPNO-MP2 response
|
||
|
Willem Van den Heuvel : Paramagnetic NMR
|
||
|
Boris Wezisla : Elementary symmetry handling
|
||
|
Frank Wennmohs : Technical directorship
|
||
|
|
||
|
|
||
|
We gratefully acknowledge several colleagues who have allowed us to
|
||
|
interface, adapt or use parts of their codes:
|
||
|
Stefan Grimme, W. Hujo, H. Kruse, P. Pracht, : VdW corrections, initial TS optimization,
|
||
|
C. Bannwarth, S. Ehlert DFT functionals, gCP, sTDA/sTD-DF
|
||
|
Ed Valeev, F. Pavosevic, A. Kumar : LibInt (2-el integral package), F12 methods
|
||
|
Garnet Chan, S. Sharma, J. Yang, R. Olivares : DMRG
|
||
|
Ulf Ekstrom : XCFun DFT Library
|
||
|
Mihaly Kallay : mrcc (arbitrary order and MRCC methods)
|
||
|
Jiri Pittner, Ondrej Demel : Mk-CCSD
|
||
|
Frank Weinhold : gennbo (NPA and NBO analysis)
|
||
|
Christopher J. Cramer and Donald G. Truhlar : smd solvation model
|
||
|
Lars Goerigk : TD-DFT with DH, B97 family of functionals
|
||
|
V. Asgeirsson, H. Jonsson : NEB implementation
|
||
|
FAccTs GmbH : IRC, NEB, NEB-TS, DLPNO-Multilevel, CI-OPT
|
||
|
MM, QMMM, 2- and 3-layer-ONIOM, Crystal-QMMM,
|
||
|
LR-CPCM, SF, NACMEs, symmetry and pop. for TD-DFT,
|
||
|
nearIR, NL-DFT gradient (VV10), updates on ESD,
|
||
|
ML-optimized integration grids
|
||
|
S Lehtola, MJT Oliveira, MAL Marques : LibXC Library
|
||
|
Liviu Ungur et al : ANISO software
|
||
|
|
||
|
|
||
|
Your calculation uses the libint2 library for the computation of 2-el integrals
|
||
|
For citations please refer to: http://libint.valeyev.net
|
||
|
|
||
|
Your ORCA version has been built with support for libXC version: 5.1.0
|
||
|
For citations please refer to: https://tddft.org/programs/libxc/
|
||
|
|
||
|
This ORCA versions uses:
|
||
|
CBLAS interface : Fast vector & matrix operations
|
||
|
LAPACKE interface : Fast linear algebra routines
|
||
|
SCALAPACK package : Parallel linear algebra routines
|
||
|
Shared memory : Shared parallel matrices
|
||
|
BLAS/LAPACK : OpenBLAS 0.3.15 USE64BITINT DYNAMIC_ARCH NO_AFFINITY SkylakeX SINGLE_THREADED
|
||
|
Core in use : SkylakeX
|
||
|
Copyright (c) 2011-2014, The OpenBLAS Project
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
***************************************
|
||
|
The coordinates will be read from file: cmmd.xyz
|
||
|
***************************************
|
||
|
|
||
|
|
||
|
Your calculation utilizes the semiempirical GFN2-xTB method
|
||
|
Please cite in your paper:
|
||
|
C. Bannwarth, Ehlert S., S. Grimme, J. Chem. Theory Comput., 15, (2019), 1652.
|
||
|
|
||
|
|
||
|
================================================================================
|
||
|
|
||
|
================================================================================
|
||
|
WARNINGS
|
||
|
Please study these warnings very carefully!
|
||
|
================================================================================
|
||
|
|
||
|
WARNING: Old DensityContainer found on disk!
|
||
|
Will remove this file -
|
||
|
If you want to keep old densities, please start your calculation with a different basename.
|
||
|
|
||
|
WARNING: Gradients needed for Numerical Frequencies
|
||
|
===> : Setting RunTyp to EnGrad
|
||
|
|
||
|
WARNING: Found dipole moment calculation with XTB calculation
|
||
|
===> : Switching off dipole moment calculation
|
||
|
|
||
|
|
||
|
WARNING: TRAH-SCF for XTB is not implemented!
|
||
|
===> : Turning TRAH off!
|
||
|
|
||
|
================================================================================
|
||
|
INPUT FILE
|
||
|
================================================================================
|
||
|
NAME = cmmd.in
|
||
|
| 1> #CMMDE generated Orca input file
|
||
|
| 2> !XTB2 Numfreq
|
||
|
| 3> %pal
|
||
|
| 4> nprocs 1
|
||
|
| 5> end
|
||
|
| 6>
|
||
|
| 7> *xyzfile 0 1 cmmd.xyz
|
||
|
| 8>
|
||
|
| 9> %freq
|
||
|
| 10> scalfreq 1
|
||
|
| 11> Temp 298.15
|
||
|
| 12> Pressure 1.0
|
||
|
| 13> end
|
||
|
| 14>
|
||
|
| 15> ****END OF INPUT****
|
||
|
================================================================================
|
||
|
|
||
|
*******************************
|
||
|
* Energy+Gradient Calculation *
|
||
|
*******************************
|
||
|
|
||
|
-----------------------------------------------------------
|
||
|
| ===================== |
|
||
|
| x T B |
|
||
|
| ===================== |
|
||
|
| S. Grimme |
|
||
|
| Mulliken Center for Theoretical Chemistry |
|
||
|
| University of Bonn |
|
||
|
| Aditya W. Sakti |
|
||
|
| Departemen Kimia |
|
||
|
| Universitas Pertamina |
|
||
|
-----------------------------------------------------------
|
||
|
|
||
|
* xtb version 6.4.1 (060166e8e329d5f5f0e407f406ce482635821d54) compiled by '@Linux' on 12/03/2021
|
||
|
|
||
|
xtb is free software: you can redistribute it and/or modify it under
|
||
|
the terms of the GNU Lesser General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
xtb is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU Lesser General Public License for more details.
|
||
|
|
||
|
Cite this work as:
|
||
|
* C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht,
|
||
|
J. Seibert, S. Spicher, S. Grimme, WIREs Comput. Mol. Sci., 2020, 11,
|
||
|
e01493. DOI: 10.1002/wcms.1493
|
||
|
|
||
|
for GFN2-xTB:
|
||
|
* C. Bannwarth, S. Ehlert and S. Grimme., J. Chem. Theory Comput., 2019,
|
||
|
15, 1652-1671. DOI: 10.1021/acs.jctc.8b01176
|
||
|
for GFN1-xTB:
|
||
|
* S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 2017,
|
||
|
13, 1989-2009. DOI: 10.1021/acs.jctc.7b00118
|
||
|
for GFN0-xTB:
|
||
|
* P. Pracht, E. Caldeweyher, S. Ehlert, S. Grimme, ChemRxiv, 2019, preprint.
|
||
|
DOI: 10.26434/chemrxiv.8326202.v1
|
||
|
for GFN-FF:
|
||
|
* S. Spicher and S. Grimme, Angew. Chem. Int. Ed., 2020, 59, 15665-15673.
|
||
|
DOI: 10.1002/anie.202004239
|
||
|
|
||
|
for ALPB and GBSA implicit solvation:
|
||
|
* S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput.,
|
||
|
2021, 17, 4250-4261. DOI: 10.1021/acs.jctc.1c00471
|
||
|
|
||
|
for DFT-D4:
|
||
|
* E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017,
|
||
|
147, 034112. DOI: 10.1063/1.4993215
|
||
|
* E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher,
|
||
|
C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122.
|
||
|
DOI: 10.1063/1.5090222
|
||
|
* E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys.
|
||
|
2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A
|
||
|
|
||
|
for sTDA-xTB:
|
||
|
* S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103.
|
||
|
DOI: 10.1063/1.4959605
|
||
|
|
||
|
in the mass-spec context:
|
||
|
* V. Asgeirsson, C. Bauer and S. Grimme, Chem. Sci., 2017, 8, 4879.
|
||
|
DOI: 10.1039/c7sc00601b
|
||
|
* J. Koopman and S. Grimme, ACS Omega 2019, 4, 12, 15120-15133.
|
||
|
DOI: 10.1021/acsomega.9b02011
|
||
|
|
||
|
for metadynamics refer to:
|
||
|
* S. Grimme, J. Chem. Theory Comput., 2019, 155, 2847-2862
|
||
|
DOI: 10.1021/acs.jctc.9b00143
|
||
|
|
||
|
for SPH calculations refer to:
|
||
|
* S. Spicher and S. Grimme, J. Chem. Theory Comput., 2021, 17, 1701-1714
|
||
|
DOI: 10.1021/acs.jctc.0c01306
|
||
|
|
||
|
with help from (in alphabetical order)
|
||
|
P. Atkinson, C. Bannwarth, F. Bohle, G. Brandenburg, E. Caldeweyher
|
||
|
M. Checinski, S. Dohm, S. Ehlert, S. Ehrlich, I. Gerasimov, J. Koopman
|
||
|
C. Lavigne, S. Lehtola, F. März, M. Müller, F. Musil, H. Neugebauer
|
||
|
J. Pisarek, C. Plett, P. Pracht, J. Seibert, P. Shushkov, S. Spicher
|
||
|
M. Stahn, M. Steiner, T. Strunk, J. Stückrath, T. Rose, and J. Unsleber
|
||
|
|
||
|
* started run on 2022/04/28 at 11:27:34.587
|
||
|
|
||
|
-------------------------------------------------
|
||
|
| Calculation Setup |
|
||
|
-------------------------------------------------
|
||
|
|
||
|
program call : /home/adit/opt/orca/otool_xtb cmmd_XTB.xyz --grad -c 0 -u 0 -P 1 --namespace cmmd --input cmmd_XTB.input.tmp --acc 1.000000
|
||
|
hostname : compute
|
||
|
calculation namespace : cmmd
|
||
|
coordinate file : cmmd_XTB.xyz
|
||
|
number of atoms : 3
|
||
|
number of electrons : 8
|
||
|
charge : 0
|
||
|
spin : 0.0
|
||
|
first test random number : 0.93951341933391
|
||
|
|
||
|
ID Z sym. atoms
|
||
|
1 8 O 1
|
||
|
2 1 H 2, 3
|
||
|
|
||
|
-------------------------------------------------
|
||
|
| G F N 2 - x T B |
|
||
|
-------------------------------------------------
|
||
|
|
||
|
Reference 10.1021/acs.jctc.8b01176
|
||
|
* Hamiltonian:
|
||
|
H0-scaling (s, p, d) 1.850000 2.230000 2.230000
|
||
|
zeta-weighting 0.500000
|
||
|
* Dispersion:
|
||
|
s8 2.700000
|
||
|
a1 0.520000
|
||
|
a2 5.000000
|
||
|
s9 5.000000
|
||
|
* Repulsion:
|
||
|
kExp 1.500000 1.000000
|
||
|
rExp 1.000000
|
||
|
* Coulomb:
|
||
|
alpha 2.000000
|
||
|
third order shell-resolved
|
||
|
anisotropic true
|
||
|
a3 3.000000
|
||
|
a5 4.000000
|
||
|
cn-shift 1.200000
|
||
|
cn-exp 4.000000
|
||
|
max-rad 5.000000
|
||
|
|
||
|
|
||
|
...................................................
|
||
|
: SETUP :
|
||
|
:.................................................:
|
||
|
: # basis functions 6 :
|
||
|
: # atomic orbitals 6 :
|
||
|
: # shells 4 :
|
||
|
: # electrons 8 :
|
||
|
: max. iterations 250 :
|
||
|
: Hamiltonian GFN2-xTB :
|
||
|
: restarted? false :
|
||
|
: GBSA solvation false :
|
||
|
: PC potential false :
|
||
|
: electronic temp. 300.0000000 K :
|
||
|
: accuracy 1.0000000 :
|
||
|
: -> integral cutoff 0.2500000E+02 :
|
||
|
: -> integral neglect 0.1000000E-07 :
|
||
|
: -> SCF convergence 0.1000000E-05 Eh :
|
||
|
: -> wf. convergence 0.1000000E-03 e :
|
||
|
: Broyden damping 0.4000000 :
|
||
|
...................................................
|
||
|
|
||
|
iter E dE RMSdq gap omega full diag
|
||
|
1 -5.1005103 -0.510051E+01 0.419E+00 14.71 0.0 T
|
||
|
2 -5.1019252 -0.141483E-02 0.240E+00 14.41 1.0 T
|
||
|
3 -5.1021667 -0.241498E-03 0.391E-01 14.18 1.0 T
|
||
|
4 -5.1022308 -0.641084E-04 0.843E-02 14.33 1.0 T
|
||
|
5 -5.1022332 -0.246222E-05 0.551E-02 14.28 1.0 T
|
||
|
6 -5.1022352 -0.194708E-05 0.107E-03 14.30 54.1 T
|
||
|
7 -5.1022352 0.126747E-09 0.102E-03 14.30 56.4 T
|
||
|
8 -5.1022352 -0.665856E-09 0.201E-05 14.30 2872.0 T
|
||
|
9 -5.1022352 -0.251354E-12 0.108E-07 14.30 100000.0 T
|
||
|
|
||
|
*** convergence criteria satisfied after 9 iterations ***
|
||
|
|
||
|
# Occupation Energy/Eh Energy/eV
|
||
|
-------------------------------------------------------------
|
||
|
1 2.0000 -0.6809644 -18.5300
|
||
|
2 2.0000 -0.5645561 -15.3624
|
||
|
3 2.0000 -0.5163314 -14.0501
|
||
|
4 2.0000 -0.4474968 -12.1770 (HOMO)
|
||
|
5 0.0780978 2.1251 (LUMO)
|
||
|
6 0.2232972 6.0762
|
||
|
-------------------------------------------------------------
|
||
|
HL-Gap 0.5255946 Eh 14.3022 eV
|
||
|
Fermi-level -0.1846995 Eh -5.0259 eV
|
||
|
|
||
|
SCC (total) 0 d, 0 h, 0 min, 0.033 sec
|
||
|
SCC setup ... 0 min, 0.000 sec ( 0.138%)
|
||
|
Dispersion ... 0 min, 0.000 sec ( 0.017%)
|
||
|
classical contributions ... 0 min, 0.000 sec ( 0.015%)
|
||
|
integral evaluation ... 0 min, 0.000 sec ( 0.149%)
|
||
|
iterations ... 0 min, 0.033 sec ( 99.151%)
|
||
|
molecular gradient ... 0 min, 0.000 sec ( 0.289%)
|
||
|
printout ... 0 min, 0.000 sec ( 0.225%)
|
||
|
|
||
|
:::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||
|
:: SUMMARY ::
|
||
|
:::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||
|
:: total energy -5.070123981303 Eh ::
|
||
|
:: gradient norm 0.017792229436 Eh/a0 ::
|
||
|
:: HOMO-LUMO gap 14.302156491823 eV ::
|
||
|
::.................................................::
|
||
|
:: SCC energy -5.102235193405 Eh ::
|
||
|
:: -> isotropic ES 0.031392635975 Eh ::
|
||
|
:: -> anisotropic ES 0.000754364857 Eh ::
|
||
|
:: -> anisotropic XC -0.000693407516 Eh ::
|
||
|
:: -> dispersion -0.000141490641 Eh ::
|
||
|
:: repulsion energy 0.032111212067 Eh ::
|
||
|
:: add. restraining 0.000000000000 Eh ::
|
||
|
:: total charge 0.000000000000 e ::
|
||
|
:::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||
|
|
||
|
|
||
|
Property printout bound to 'properties.out'
|
||
|
|
||
|
-------------------------------------------------
|
||
|
| TOTAL ENERGY -5.070123981303 Eh |
|
||
|
| GRADIENT NORM 0.017792229436 Eh/α |
|
||
|
| HOMO-LUMO GAP 14.302156491823 eV |
|
||
|
-------------------------------------------------
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
* finished run on 2022/04/28 at 11:27:34.626
|
||
|
------------------------------------------------------------------------
|
||
|
total:
|
||
|
* wall-time: 0 d, 0 h, 0 min, 0.039 sec
|
||
|
* cpu-time: 0 d, 0 h, 0 min, 0.007 sec
|
||
|
* ratio c/w: 0.169 speedup
|
||
|
SCF:
|
||
|
* wall-time: 0 d, 0 h, 0 min, 0.033 sec
|
||
|
* cpu-time: 0 d, 0 h, 0 min, 0.001 sec
|
||
|
* ratio c/w: 0.041 speedup
|
||
|
|
||
|
|
||
|
------------------------- --------------------
|
||
|
FINAL SINGLE POINT ENERGY -5.070123981300
|
||
|
------------------------- --------------------
|
||
|
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
ORCA NUMERICAL FREQUENCIES
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
Number of atoms ... 3
|
||
|
Central differences ... used
|
||
|
Number of displacements ... 18
|
||
|
Numerical increment ... 5.000e-03 bohr
|
||
|
IR-spectrum generation ... on
|
||
|
Raman-spectrum generation ... off
|
||
|
Surface Crossing Hessian ... off
|
||
|
|
||
|
The output will be reduced. Please look at the following files:
|
||
|
SCF program output ... >cmmd.lastscf
|
||
|
Integral program output ... >cmmd.lastint
|
||
|
Gradient program output ... >cmmd.lastgrad
|
||
|
Dipole moment program output ... >cmmd.lastmom
|
||
|
AutoCI program output ... >cmmd.lastautoci
|
||
|
|
||
|
<< Calculating on displaced geometry 1 (of 18) >>
|
||
|
<< Calculating on displaced geometry 2 (of 18) >>
|
||
|
<< Calculating on displaced geometry 3 (of 18) >>
|
||
|
<< Calculating on displaced geometry 4 (of 18) >>
|
||
|
<< Calculating on displaced geometry 5 (of 18) >>
|
||
|
<< Calculating on displaced geometry 6 (of 18) >>
|
||
|
<< Calculating on displaced geometry 7 (of 18) >>
|
||
|
<< Calculating on displaced geometry 8 (of 18) >>
|
||
|
<< Calculating on displaced geometry 9 (of 18) >>
|
||
|
<< Calculating on displaced geometry 10 (of 18) >>
|
||
|
<< Calculating on displaced geometry 11 (of 18) >>
|
||
|
<< Calculating on displaced geometry 12 (of 18) >>
|
||
|
<< Calculating on displaced geometry 13 (of 18) >>
|
||
|
<< Calculating on displaced geometry 14 (of 18) >>
|
||
|
<< Calculating on displaced geometry 15 (of 18) >>
|
||
|
<< Calculating on displaced geometry 16 (of 18) >>
|
||
|
<< Calculating on displaced geometry 17 (of 18) >>
|
||
|
<< Calculating on displaced geometry 18 (of 18) >>
|
||
|
|
||
|
-----------------------
|
||
|
VIBRATIONAL FREQUENCIES
|
||
|
-----------------------
|
||
|
|
||
|
Scaling factor for frequencies = 1.000000000 (already applied!)
|
||
|
|
||
|
0: 0.00 cm**-1
|
||
|
1: 0.00 cm**-1
|
||
|
2: 0.00 cm**-1
|
||
|
3: 0.00 cm**-1
|
||
|
4: 0.00 cm**-1
|
||
|
5: 0.00 cm**-1
|
||
|
6: 1591.02 cm**-1
|
||
|
7: 3532.22 cm**-1
|
||
|
8: 3553.96 cm**-1
|
||
|
|
||
|
|
||
|
------------
|
||
|
NORMAL MODES
|
||
|
------------
|
||
|
|
||
|
These modes are the cartesian displacements weighted by the diagonal matrix
|
||
|
M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom
|
||
|
Thus, these vectors are normalized but *not* orthogonal
|
||
|
|
||
|
0 1 2 3 4 5
|
||
|
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
6 7 8
|
||
|
0 0.040721 -0.056762 -0.029045
|
||
|
1 0.045366 0.031729 -0.032147
|
||
|
2 0.035473 0.024811 -0.025137
|
||
|
3 0.027275 0.702670 0.707675
|
||
|
4 -0.555227 0.030998 -0.009740
|
||
|
5 -0.434156 0.024236 -0.007618
|
||
|
6 -0.673601 0.198259 -0.246669
|
||
|
7 -0.164818 -0.534607 0.519974
|
||
|
8 -0.128876 -0.418033 0.406591
|
||
|
|
||
|
|
||
|
-----------
|
||
|
IR SPECTRUM
|
||
|
-----------
|
||
|
|
||
|
Mode freq eps Int T**2 TX TY TZ
|
||
|
cm**-1 L/(mol*cm) km/mol a.u.
|
||
|
----------------------------------------------------------------------------
|
||
|
6: 1591.02 0.024022 121.40 0.004712 (-0.035425 -0.046627 -0.035815)
|
||
|
7: 3532.22 0.000687 3.47 0.000061 ( 0.006792 -0.003138 -0.002177)
|
||
|
8: 3553.96 0.002224 11.24 0.000195 ( 0.012984 0.004205 0.003002)
|
||
|
|
||
|
* The epsilon (eps) is given for a Dirac delta lineshape.
|
||
|
** The dipole moment derivative (T) already includes vibrational overlap.
|
||
|
|
||
|
The first frequency considered to be a vibration is 6
|
||
|
The total number of vibrations considered is 3
|
||
|
|
||
|
|
||
|
--------------------------
|
||
|
THERMOCHEMISTRY AT 298.15K
|
||
|
--------------------------
|
||
|
|
||
|
Temperature ... 298.15 K
|
||
|
Pressure ... 1.00 atm
|
||
|
Total Mass ... 18.02 AMU
|
||
|
|
||
|
Throughout the following assumptions are being made:
|
||
|
(1) The electronic state is orbitally nondegenerate
|
||
|
(2) There are no thermally accessible electronically excited states
|
||
|
(3) Hindered rotations indicated by low frequency modes are not
|
||
|
treated as such but are treated as vibrations and this may
|
||
|
cause some error
|
||
|
(4) All equations used are the standard statistical mechanics
|
||
|
equations for an ideal gas
|
||
|
(5) All vibrations are strictly harmonic
|
||
|
|
||
|
freq. 1591.02 E(vib) ... 0.00
|
||
|
freq. 3532.22 E(vib) ... 0.00
|
||
|
freq. 3553.96 E(vib) ... 0.00
|
||
|
|
||
|
------------
|
||
|
INNER ENERGY
|
||
|
------------
|
||
|
|
||
|
The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans)
|
||
|
E(el) - is the total energy from the electronic structure calculation
|
||
|
= E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc)
|
||
|
E(ZPE) - the the zero temperature vibrational energy from the frequency calculation
|
||
|
E(vib) - the the finite temperature correction to E(ZPE) due to population
|
||
|
of excited vibrational states
|
||
|
E(rot) - is the rotational thermal energy
|
||
|
E(trans)- is the translational thermal energy
|
||
|
|
||
|
Summary of contributions to the inner energy U:
|
||
|
Electronic energy ... -5.07012398 Eh
|
||
|
Zero point energy ... 0.01976814 Eh 12.40 kcal/mol
|
||
|
Thermal vibrational correction ... 0.00000336 Eh 0.00 kcal/mol
|
||
|
Thermal rotational correction ... 0.00141627 Eh 0.89 kcal/mol
|
||
|
Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Total thermal energy -5.04751994 Eh
|
||
|
|
||
|
|
||
|
Summary of corrections to the electronic energy:
|
||
|
(perhaps to be used in another calculation)
|
||
|
Total thermal correction 0.00283590 Eh 1.78 kcal/mol
|
||
|
Non-thermal (ZPE) correction 0.01976814 Eh 12.40 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Total correction 0.02260404 Eh 14.18 kcal/mol
|
||
|
|
||
|
|
||
|
--------
|
||
|
ENTHALPY
|
||
|
--------
|
||
|
|
||
|
The enthalpy is H = U + kB*T
|
||
|
kB is Boltzmann's constant
|
||
|
Total free energy ... -5.04751994 Eh
|
||
|
Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Total Enthalpy ... -5.04657573 Eh
|
||
|
|
||
|
|
||
|
Note: Rotational entropy computed according to Herzberg
|
||
|
Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945
|
||
|
Point Group: C2v, Symmetry Number: 2
|
||
|
Rotational constants in cm-1: 26.033328 14.586495 9.348515
|
||
|
|
||
|
Vibrational entropy computed according to the QRRHO of S. Grimme
|
||
|
Chem.Eur.J. 2012 18 9955
|
||
|
|
||
|
|
||
|
-------
|
||
|
ENTROPY
|
||
|
-------
|
||
|
|
||
|
The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans))
|
||
|
S(el) - electronic entropy
|
||
|
S(vib) - vibrational entropy
|
||
|
S(rot) - rotational entropy
|
||
|
S(trans)- translational entropy
|
||
|
The entropies will be listed as multiplied by the temperature to get
|
||
|
units of energy
|
||
|
|
||
|
Electronic entropy ... 0.00000000 Eh 0.00 kcal/mol
|
||
|
Vibrational entropy ... 0.00000380 Eh 0.00 kcal/mol
|
||
|
Rotational entropy ... 0.00499716 Eh 3.14 kcal/mol
|
||
|
Translational entropy ... 0.01644380 Eh 10.32 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Final entropy term ... 0.02144476 Eh 13.46 kcal/mol
|
||
|
|
||
|
In case the symmetry of your molecule has not been determined correctly
|
||
|
or in case you have a reason to use a different symmetry number we print
|
||
|
out the resulting rotational entropy values for sn=1,12 :
|
||
|
--------------------------------------------------------
|
||
|
| sn= 1 | S(rot)= 0.00565162 Eh 3.55 kcal/mol|
|
||
|
| sn= 2 | S(rot)= 0.00499716 Eh 3.14 kcal/mol|
|
||
|
| sn= 3 | S(rot)= 0.00461433 Eh 2.90 kcal/mol|
|
||
|
| sn= 4 | S(rot)= 0.00434270 Eh 2.73 kcal/mol|
|
||
|
| sn= 5 | S(rot)= 0.00413202 Eh 2.59 kcal/mol|
|
||
|
| sn= 6 | S(rot)= 0.00395987 Eh 2.48 kcal/mol|
|
||
|
| sn= 7 | S(rot)= 0.00381433 Eh 2.39 kcal/mol|
|
||
|
| sn= 8 | S(rot)= 0.00368825 Eh 2.31 kcal/mol|
|
||
|
| sn= 9 | S(rot)= 0.00357704 Eh 2.24 kcal/mol|
|
||
|
| sn=10 | S(rot)= 0.00347756 Eh 2.18 kcal/mol|
|
||
|
| sn=11 | S(rot)= 0.00338757 Eh 2.13 kcal/mol|
|
||
|
| sn=12 | S(rot)= 0.00330541 Eh 2.07 kcal/mol|
|
||
|
--------------------------------------------------------
|
||
|
|
||
|
|
||
|
-------------------
|
||
|
GIBBS FREE ENERGY
|
||
|
-------------------
|
||
|
|
||
|
The Gibbs free energy is G = H - T*S
|
||
|
|
||
|
Total enthalpy ... -5.04657573 Eh
|
||
|
Total entropy correction ... -0.02144476 Eh -13.46 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Final Gibbs free energy ... -5.06802049 Eh
|
||
|
|
||
|
For completeness - the Gibbs free energy minus the electronic energy
|
||
|
G-E(el) ... 0.00210349 Eh 1.32 kcal/mol
|
||
|
|
||
|
|
||
|
|
||
|
Timings for individual modules:
|
||
|
|
||
|
Sum of individual times ... 43.304 sec (= 0.722 min)
|
||
|
Numerical frequency calculation ... 43.071 sec (= 0.718 min) 99.5 %
|
||
|
XTB module ... 0.232 sec (= 0.004 min) 0.5 %
|
||
|
****ORCA TERMINATED NORMALLY****
|
||
|
TOTAL RUN TIME: 0 days 0 hours 0 minutes 43 seconds 500 msec
|