You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
716 lines
34 KiB
716 lines
34 KiB
2 years ago
|
|
||
|
*****************
|
||
|
* O R C A *
|
||
|
*****************
|
||
|
|
||
|
#,
|
||
|
###
|
||
|
####
|
||
|
#####
|
||
|
######
|
||
|
########,
|
||
|
,,################,,,,,
|
||
|
,,#################################,,
|
||
|
,,##########################################,,
|
||
|
,#########################################, ''#####,
|
||
|
,#############################################,, '####,
|
||
|
,##################################################,,,,####,
|
||
|
,###########'''' ''''###############################
|
||
|
,#####'' ,,,,##########,,,, '''####''' '####
|
||
|
,##' ,,,,###########################,,, '##
|
||
|
' ,,###'''' '''############,,,
|
||
|
,,##'' '''############,,,, ,,,,,,###''
|
||
|
,#'' '''#######################'''
|
||
|
' ''''####''''
|
||
|
,#######, #######, ,#######, ##
|
||
|
,#' '#, ## ## ,#' '#, #''# ###### ,####,
|
||
|
## ## ## ,#' ## #' '# # #' '#
|
||
|
## ## ####### ## ,######, #####, # #
|
||
|
'#, ,#' ## ## '#, ,#' ,# #, ## #, ,#
|
||
|
'#######' ## ## '#######' #' '# #####' # '####'
|
||
|
|
||
|
|
||
|
|
||
|
#######################################################
|
||
|
# -***- #
|
||
|
# Department of theory and spectroscopy #
|
||
|
# Directorship and core code : Frank Neese #
|
||
|
# Max Planck Institute fuer Kohlenforschung #
|
||
|
# Kaiser Wilhelm Platz 1 #
|
||
|
# D-45470 Muelheim/Ruhr #
|
||
|
# Germany #
|
||
|
# #
|
||
|
# All rights reserved #
|
||
|
# -***- #
|
||
|
#######################################################
|
||
|
|
||
|
|
||
|
Program Version 5.0.2 - RELEASE -
|
||
|
|
||
|
|
||
|
With contributions from (in alphabetic order):
|
||
|
Daniel Aravena : Magnetic Suceptibility
|
||
|
Michael Atanasov : Ab Initio Ligand Field Theory (pilot matlab implementation)
|
||
|
Alexander A. Auer : GIAO ZORA, VPT2 properties, NMR spectrum
|
||
|
Ute Becker : Parallelization
|
||
|
Giovanni Bistoni : ED, misc. LED, open-shell LED, HFLD
|
||
|
Martin Brehm : Molecular dynamics
|
||
|
Dmytro Bykov : SCF Hessian
|
||
|
Vijay G. Chilkuri : MRCI spin determinant printing, contributions to CSF-ICE
|
||
|
Dipayan Datta : RHF DLPNO-CCSD density
|
||
|
Achintya Kumar Dutta : EOM-CC, STEOM-CC
|
||
|
Dmitry Ganyushin : Spin-Orbit,Spin-Spin,Magnetic field MRCI
|
||
|
Miquel Garcia : C-PCM and meta-GGA Hessian, CC/C-PCM, Gaussian charge scheme
|
||
|
Yang Guo : DLPNO-NEVPT2, F12-NEVPT2, CIM, IAO-localization
|
||
|
Andreas Hansen : Spin unrestricted coupled pair/coupled cluster methods
|
||
|
Benjamin Helmich-Paris : MC-RPA, TRAH-SCF, COSX integrals
|
||
|
Lee Huntington : MR-EOM, pCC
|
||
|
Robert Izsak : Overlap fitted RIJCOSX, COSX-SCS-MP3, EOM
|
||
|
Marcus Kettner : VPT2
|
||
|
Christian Kollmar : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density, CASPT2, CASPT2-K
|
||
|
Simone Kossmann : Meta GGA functionals, TD-DFT gradient, OOMP2, MP2 Hessian
|
||
|
Martin Krupicka : Initial AUTO-CI
|
||
|
Lucas Lang : DCDCAS
|
||
|
Marvin Lechner : AUTO-CI (C++ implementation), FIC-MRCC
|
||
|
Dagmar Lenk : GEPOL surface, SMD
|
||
|
Dimitrios Liakos : Extrapolation schemes; Compound Job, initial MDCI parallelization
|
||
|
Dimitrios Manganas : Further ROCIS development; embedding schemes
|
||
|
Dimitrios Pantazis : SARC Basis sets
|
||
|
Anastasios Papadopoulos: AUTO-CI, single reference methods and gradients
|
||
|
Taras Petrenko : DFT Hessian,TD-DFT gradient, ASA, ECA, R-Raman, ABS, FL, XAS/XES, NRVS
|
||
|
Peter Pinski : DLPNO-MP2, DLPNO-MP2 Gradient
|
||
|
Christoph Reimann : Effective Core Potentials
|
||
|
Marius Retegan : Local ZFS, SOC
|
||
|
Christoph Riplinger : Optimizer, TS searches, QM/MM, DLPNO-CCSD(T), (RO)-DLPNO pert. Triples
|
||
|
Tobias Risthaus : Range-separated hybrids, TD-DFT gradient, RPA, STAB
|
||
|
Michael Roemelt : Original ROCIS implementation
|
||
|
Masaaki Saitow : Open-shell DLPNO-CCSD energy and density
|
||
|
Barbara Sandhoefer : DKH picture change effects
|
||
|
Avijit Sen : IP-ROCIS
|
||
|
Kantharuban Sivalingam : CASSCF convergence, NEVPT2, FIC-MRCI
|
||
|
Bernardo de Souza : ESD, SOC TD-DFT
|
||
|
Georgi Stoychev : AutoAux, RI-MP2 NMR, DLPNO-MP2 response
|
||
|
Willem Van den Heuvel : Paramagnetic NMR
|
||
|
Boris Wezisla : Elementary symmetry handling
|
||
|
Frank Wennmohs : Technical directorship
|
||
|
|
||
|
|
||
|
We gratefully acknowledge several colleagues who have allowed us to
|
||
|
interface, adapt or use parts of their codes:
|
||
|
Stefan Grimme, W. Hujo, H. Kruse, P. Pracht, : VdW corrections, initial TS optimization,
|
||
|
C. Bannwarth, S. Ehlert DFT functionals, gCP, sTDA/sTD-DF
|
||
|
Ed Valeev, F. Pavosevic, A. Kumar : LibInt (2-el integral package), F12 methods
|
||
|
Garnet Chan, S. Sharma, J. Yang, R. Olivares : DMRG
|
||
|
Ulf Ekstrom : XCFun DFT Library
|
||
|
Mihaly Kallay : mrcc (arbitrary order and MRCC methods)
|
||
|
Jiri Pittner, Ondrej Demel : Mk-CCSD
|
||
|
Frank Weinhold : gennbo (NPA and NBO analysis)
|
||
|
Christopher J. Cramer and Donald G. Truhlar : smd solvation model
|
||
|
Lars Goerigk : TD-DFT with DH, B97 family of functionals
|
||
|
V. Asgeirsson, H. Jonsson : NEB implementation
|
||
|
FAccTs GmbH : IRC, NEB, NEB-TS, DLPNO-Multilevel, CI-OPT
|
||
|
MM, QMMM, 2- and 3-layer-ONIOM, Crystal-QMMM,
|
||
|
LR-CPCM, SF, NACMEs, symmetry and pop. for TD-DFT,
|
||
|
nearIR, NL-DFT gradient (VV10), updates on ESD,
|
||
|
ML-optimized integration grids
|
||
|
S Lehtola, MJT Oliveira, MAL Marques : LibXC Library
|
||
|
Liviu Ungur et al : ANISO software
|
||
|
|
||
|
|
||
|
Your calculation uses the libint2 library for the computation of 2-el integrals
|
||
|
For citations please refer to: http://libint.valeyev.net
|
||
|
|
||
|
Your ORCA version has been built with support for libXC version: 5.1.0
|
||
|
For citations please refer to: https://tddft.org/programs/libxc/
|
||
|
|
||
|
This ORCA versions uses:
|
||
|
CBLAS interface : Fast vector & matrix operations
|
||
|
LAPACKE interface : Fast linear algebra routines
|
||
|
SCALAPACK package : Parallel linear algebra routines
|
||
|
Shared memory : Shared parallel matrices
|
||
|
BLAS/LAPACK : OpenBLAS 0.3.15 USE64BITINT DYNAMIC_ARCH NO_AFFINITY SkylakeX SINGLE_THREADED
|
||
|
Core in use : SkylakeX
|
||
|
Copyright (c) 2011-2014, The OpenBLAS Project
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
***************************************
|
||
|
The coordinates will be read from file: cmmd.xyz
|
||
|
***************************************
|
||
|
|
||
|
|
||
|
Your calculation utilizes the semiempirical GFN2-xTB method
|
||
|
Please cite in your paper:
|
||
|
C. Bannwarth, Ehlert S., S. Grimme, J. Chem. Theory Comput., 15, (2019), 1652.
|
||
|
|
||
|
|
||
|
================================================================================
|
||
|
|
||
|
================================================================================
|
||
|
WARNINGS
|
||
|
Please study these warnings very carefully!
|
||
|
================================================================================
|
||
|
|
||
|
WARNING: Old DensityContainer found on disk!
|
||
|
Will remove this file -
|
||
|
If you want to keep old densities, please start your calculation with a different basename.
|
||
|
|
||
|
WARNING: Gradients needed for Numerical Frequencies
|
||
|
===> : Setting RunTyp to EnGrad
|
||
|
|
||
|
WARNING: Found dipole moment calculation with XTB calculation
|
||
|
===> : Switching off dipole moment calculation
|
||
|
|
||
|
|
||
|
WARNING: TRAH-SCF for XTB is not implemented!
|
||
|
===> : Turning TRAH off!
|
||
|
|
||
|
================================================================================
|
||
|
INPUT FILE
|
||
|
================================================================================
|
||
|
NAME = cmmd.in
|
||
|
| 1> #CMMDE generated Orca input file
|
||
|
| 2> !XTB2 Numfreq
|
||
|
| 3> %pal
|
||
|
| 4> nprocs 1
|
||
|
| 5> end
|
||
|
| 6>
|
||
|
| 7> *xyzfile 0 1 cmmd.xyz
|
||
|
| 8>
|
||
|
| 9> %freq
|
||
|
| 10> scalfreq 1
|
||
|
| 11> Temp 298.15
|
||
|
| 12> Pressure 1.0
|
||
|
| 13> end
|
||
|
| 14>
|
||
|
| 15> ****END OF INPUT****
|
||
|
================================================================================
|
||
|
|
||
|
*******************************
|
||
|
* Energy+Gradient Calculation *
|
||
|
*******************************
|
||
|
|
||
|
-----------------------------------------------------------
|
||
|
| ===================== |
|
||
|
| x T B |
|
||
|
| ===================== |
|
||
|
| S. Grimme |
|
||
|
| Mulliken Center for Theoretical Chemistry |
|
||
|
| University of Bonn |
|
||
|
| Aditya W. Sakti |
|
||
|
| Departemen Kimia |
|
||
|
| Universitas Pertamina |
|
||
|
-----------------------------------------------------------
|
||
|
|
||
|
* xtb version 6.4.1 (060166e8e329d5f5f0e407f406ce482635821d54) compiled by '@Linux' on 12/03/2021
|
||
|
|
||
|
xtb is free software: you can redistribute it and/or modify it under
|
||
|
the terms of the GNU Lesser General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
xtb is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU Lesser General Public License for more details.
|
||
|
|
||
|
Cite this work as:
|
||
|
* C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht,
|
||
|
J. Seibert, S. Spicher, S. Grimme, WIREs Comput. Mol. Sci., 2020, 11,
|
||
|
e01493. DOI: 10.1002/wcms.1493
|
||
|
|
||
|
for GFN2-xTB:
|
||
|
* C. Bannwarth, S. Ehlert and S. Grimme., J. Chem. Theory Comput., 2019,
|
||
|
15, 1652-1671. DOI: 10.1021/acs.jctc.8b01176
|
||
|
for GFN1-xTB:
|
||
|
* S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 2017,
|
||
|
13, 1989-2009. DOI: 10.1021/acs.jctc.7b00118
|
||
|
for GFN0-xTB:
|
||
|
* P. Pracht, E. Caldeweyher, S. Ehlert, S. Grimme, ChemRxiv, 2019, preprint.
|
||
|
DOI: 10.26434/chemrxiv.8326202.v1
|
||
|
for GFN-FF:
|
||
|
* S. Spicher and S. Grimme, Angew. Chem. Int. Ed., 2020, 59, 15665-15673.
|
||
|
DOI: 10.1002/anie.202004239
|
||
|
|
||
|
for ALPB and GBSA implicit solvation:
|
||
|
* S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput.,
|
||
|
2021, 17, 4250-4261. DOI: 10.1021/acs.jctc.1c00471
|
||
|
|
||
|
for DFT-D4:
|
||
|
* E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017,
|
||
|
147, 034112. DOI: 10.1063/1.4993215
|
||
|
* E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher,
|
||
|
C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122.
|
||
|
DOI: 10.1063/1.5090222
|
||
|
* E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys.
|
||
|
2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A
|
||
|
|
||
|
for sTDA-xTB:
|
||
|
* S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103.
|
||
|
DOI: 10.1063/1.4959605
|
||
|
|
||
|
in the mass-spec context:
|
||
|
* V. Asgeirsson, C. Bauer and S. Grimme, Chem. Sci., 2017, 8, 4879.
|
||
|
DOI: 10.1039/c7sc00601b
|
||
|
* J. Koopman and S. Grimme, ACS Omega 2019, 4, 12, 15120-15133.
|
||
|
DOI: 10.1021/acsomega.9b02011
|
||
|
|
||
|
for metadynamics refer to:
|
||
|
* S. Grimme, J. Chem. Theory Comput., 2019, 155, 2847-2862
|
||
|
DOI: 10.1021/acs.jctc.9b00143
|
||
|
|
||
|
for SPH calculations refer to:
|
||
|
* S. Spicher and S. Grimme, J. Chem. Theory Comput., 2021, 17, 1701-1714
|
||
|
DOI: 10.1021/acs.jctc.0c01306
|
||
|
|
||
|
with help from (in alphabetical order)
|
||
|
P. Atkinson, C. Bannwarth, F. Bohle, G. Brandenburg, E. Caldeweyher
|
||
|
M. Checinski, S. Dohm, S. Ehlert, S. Ehrlich, I. Gerasimov, J. Koopman
|
||
|
C. Lavigne, S. Lehtola, F. März, M. Müller, F. Musil, H. Neugebauer
|
||
|
J. Pisarek, C. Plett, P. Pracht, J. Seibert, P. Shushkov, S. Spicher
|
||
|
M. Stahn, M. Steiner, T. Strunk, J. Stückrath, T. Rose, and J. Unsleber
|
||
|
|
||
|
* started run on 2022/04/28 at 11:27:15.724
|
||
|
|
||
|
-------------------------------------------------
|
||
|
| Calculation Setup |
|
||
|
-------------------------------------------------
|
||
|
|
||
|
program call : /home/adit/opt/orca/otool_xtb cmmd_XTB.xyz --grad -c 0 -u 0 -P 1 --namespace cmmd --input cmmd_XTB.input.tmp --acc 1.000000
|
||
|
hostname : compute
|
||
|
calculation namespace : cmmd
|
||
|
coordinate file : cmmd_XTB.xyz
|
||
|
number of atoms : 5
|
||
|
number of electrons : 8
|
||
|
charge : 0
|
||
|
spin : 0.0
|
||
|
first test random number : 0.45806096902679
|
||
|
|
||
|
ID Z sym. atoms
|
||
|
1 6 C 1
|
||
|
2 1 H 2-5
|
||
|
|
||
|
-------------------------------------------------
|
||
|
| G F N 2 - x T B |
|
||
|
-------------------------------------------------
|
||
|
|
||
|
Reference 10.1021/acs.jctc.8b01176
|
||
|
* Hamiltonian:
|
||
|
H0-scaling (s, p, d) 1.850000 2.230000 2.230000
|
||
|
zeta-weighting 0.500000
|
||
|
* Dispersion:
|
||
|
s8 2.700000
|
||
|
a1 0.520000
|
||
|
a2 5.000000
|
||
|
s9 5.000000
|
||
|
* Repulsion:
|
||
|
kExp 1.500000 1.000000
|
||
|
rExp 1.000000
|
||
|
* Coulomb:
|
||
|
alpha 2.000000
|
||
|
third order shell-resolved
|
||
|
anisotropic true
|
||
|
a3 3.000000
|
||
|
a5 4.000000
|
||
|
cn-shift 1.200000
|
||
|
cn-exp 4.000000
|
||
|
max-rad 5.000000
|
||
|
|
||
|
|
||
|
...................................................
|
||
|
: SETUP :
|
||
|
:.................................................:
|
||
|
: # basis functions 8 :
|
||
|
: # atomic orbitals 8 :
|
||
|
: # shells 6 :
|
||
|
: # electrons 8 :
|
||
|
: max. iterations 250 :
|
||
|
: Hamiltonian GFN2-xTB :
|
||
|
: restarted? false :
|
||
|
: GBSA solvation false :
|
||
|
: PC potential false :
|
||
|
: electronic temp. 300.0000000 K :
|
||
|
: accuracy 1.0000000 :
|
||
|
: -> integral cutoff 0.2500000E+02 :
|
||
|
: -> integral neglect 0.1000000E-07 :
|
||
|
: -> SCF convergence 0.1000000E-05 Eh :
|
||
|
: -> wf. convergence 0.1000000E-03 e :
|
||
|
: Broyden damping 0.4000000 :
|
||
|
...................................................
|
||
|
|
||
|
iter E dE RMSdq gap omega full diag
|
||
|
1 -4.2239587 -0.422396E+01 0.248E+00 16.90 0.0 T
|
||
|
2 -4.2374347 -0.134760E-01 0.912E-01 16.71 1.0 T
|
||
|
3 -4.2375727 -0.137987E-03 0.506E-01 16.61 1.0 T
|
||
|
4 -4.2376226 -0.499077E-04 0.100E-01 16.49 1.0 T
|
||
|
5 -4.2376226 0.183268E-07 0.539E-03 16.49 8.3 T
|
||
|
6 -4.2376227 -0.794093E-07 0.166E-04 16.49 269.4 T
|
||
|
7 -4.2376227 -0.834559E-10 0.196E-06 16.49 22792.6 T
|
||
|
|
||
|
*** convergence criteria satisfied after 7 iterations ***
|
||
|
|
||
|
# Occupation Energy/Eh Energy/eV
|
||
|
-------------------------------------------------------------
|
||
|
1 2.0000 -0.5788386 -15.7510
|
||
|
2 2.0000 -0.4661696 -12.6851
|
||
|
3 2.0000 -0.4661655 -12.6850
|
||
|
4 2.0000 -0.4661594 -12.6848 (HOMO)
|
||
|
5 0.1398593 3.8058 (LUMO)
|
||
|
6 0.2020304 5.4975
|
||
|
7 0.2020678 5.4985
|
||
|
8 0.2021139 5.4998
|
||
|
-------------------------------------------------------------
|
||
|
HL-Gap 0.6060187 Eh 16.4906 eV
|
||
|
Fermi-level -0.1631500 Eh -4.4395 eV
|
||
|
|
||
|
SCC (total) 0 d, 0 h, 0 min, 0.023 sec
|
||
|
SCC setup ... 0 min, 0.000 sec ( 1.260%)
|
||
|
Dispersion ... 0 min, 0.000 sec ( 0.106%)
|
||
|
classical contributions ... 0 min, 0.000 sec ( 0.058%)
|
||
|
integral evaluation ... 0 min, 0.001 sec ( 2.896%)
|
||
|
iterations ... 0 min, 0.021 sec ( 94.189%)
|
||
|
molecular gradient ... 0 min, 0.000 sec ( 0.973%)
|
||
|
printout ... 0 min, 0.000 sec ( 0.466%)
|
||
|
|
||
|
:::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||
|
:: SUMMARY ::
|
||
|
:::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||
|
:: total energy -4.174453278189 Eh ::
|
||
|
:: gradient norm 0.022735966218 Eh/a0 ::
|
||
|
:: HOMO-LUMO gap 16.490609280094 eV ::
|
||
|
::.................................................::
|
||
|
:: SCC energy -4.237622656391 Eh ::
|
||
|
:: -> isotropic ES 0.001892323517 Eh ::
|
||
|
:: -> anisotropic ES 0.002670073781 Eh ::
|
||
|
:: -> anisotropic XC 0.004009252448 Eh ::
|
||
|
:: -> dispersion -0.000663926968 Eh ::
|
||
|
:: repulsion energy 0.063169371945 Eh ::
|
||
|
:: add. restraining 0.000000000000 Eh ::
|
||
|
:: total charge 0.000000000000 e ::
|
||
|
:::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||
|
|
||
|
|
||
|
Property printout bound to 'properties.out'
|
||
|
|
||
|
-------------------------------------------------
|
||
|
| TOTAL ENERGY -4.174453278189 Eh |
|
||
|
| GRADIENT NORM 0.022735966218 Eh/α |
|
||
|
| HOMO-LUMO GAP 16.490609280094 eV |
|
||
|
-------------------------------------------------
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
* finished run on 2022/04/28 at 11:27:15.762
|
||
|
------------------------------------------------------------------------
|
||
|
total:
|
||
|
* wall-time: 0 d, 0 h, 0 min, 0.038 sec
|
||
|
* cpu-time: 0 d, 0 h, 0 min, 0.009 sec
|
||
|
* ratio c/w: 0.247 speedup
|
||
|
SCF:
|
||
|
* wall-time: 0 d, 0 h, 0 min, 0.023 sec
|
||
|
* cpu-time: 0 d, 0 h, 0 min, 0.002 sec
|
||
|
* ratio c/w: 0.094 speedup
|
||
|
|
||
|
|
||
|
------------------------- --------------------
|
||
|
FINAL SINGLE POINT ENERGY -4.174453278190
|
||
|
------------------------- --------------------
|
||
|
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
ORCA NUMERICAL FREQUENCIES
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
Number of atoms ... 5
|
||
|
Central differences ... used
|
||
|
Number of displacements ... 30
|
||
|
Numerical increment ... 5.000e-03 bohr
|
||
|
IR-spectrum generation ... on
|
||
|
Raman-spectrum generation ... off
|
||
|
Surface Crossing Hessian ... off
|
||
|
|
||
|
The output will be reduced. Please look at the following files:
|
||
|
SCF program output ... >cmmd.lastscf
|
||
|
Integral program output ... >cmmd.lastint
|
||
|
Gradient program output ... >cmmd.lastgrad
|
||
|
Dipole moment program output ... >cmmd.lastmom
|
||
|
AutoCI program output ... >cmmd.lastautoci
|
||
|
|
||
|
<< Calculating on displaced geometry 1 (of 30) >>
|
||
|
<< Calculating on displaced geometry 2 (of 30) >>
|
||
|
<< Calculating on displaced geometry 3 (of 30) >>
|
||
|
<< Calculating on displaced geometry 4 (of 30) >>
|
||
|
<< Calculating on displaced geometry 5 (of 30) >>
|
||
|
<< Calculating on displaced geometry 6 (of 30) >>
|
||
|
<< Calculating on displaced geometry 7 (of 30) >>
|
||
|
<< Calculating on displaced geometry 8 (of 30) >>
|
||
|
<< Calculating on displaced geometry 9 (of 30) >>
|
||
|
<< Calculating on displaced geometry 10 (of 30) >>
|
||
|
<< Calculating on displaced geometry 11 (of 30) >>
|
||
|
<< Calculating on displaced geometry 12 (of 30) >>
|
||
|
<< Calculating on displaced geometry 13 (of 30) >>
|
||
|
<< Calculating on displaced geometry 14 (of 30) >>
|
||
|
<< Calculating on displaced geometry 15 (of 30) >>
|
||
|
<< Calculating on displaced geometry 16 (of 30) >>
|
||
|
<< Calculating on displaced geometry 17 (of 30) >>
|
||
|
<< Calculating on displaced geometry 18 (of 30) >>
|
||
|
<< Calculating on displaced geometry 19 (of 30) >>
|
||
|
<< Calculating on displaced geometry 20 (of 30) >>
|
||
|
<< Calculating on displaced geometry 21 (of 30) >>
|
||
|
<< Calculating on displaced geometry 22 (of 30) >>
|
||
|
<< Calculating on displaced geometry 23 (of 30) >>
|
||
|
<< Calculating on displaced geometry 24 (of 30) >>
|
||
|
<< Calculating on displaced geometry 25 (of 30) >>
|
||
|
<< Calculating on displaced geometry 26 (of 30) >>
|
||
|
<< Calculating on displaced geometry 27 (of 30) >>
|
||
|
<< Calculating on displaced geometry 28 (of 30) >>
|
||
|
<< Calculating on displaced geometry 29 (of 30) >>
|
||
|
<< Calculating on displaced geometry 30 (of 30) >>
|
||
|
|
||
|
-----------------------
|
||
|
VIBRATIONAL FREQUENCIES
|
||
|
-----------------------
|
||
|
|
||
|
Scaling factor for frequencies = 1.000000000 (already applied!)
|
||
|
|
||
|
0: 0.00 cm**-1
|
||
|
1: 0.00 cm**-1
|
||
|
2: 0.00 cm**-1
|
||
|
3: 0.00 cm**-1
|
||
|
4: 0.00 cm**-1
|
||
|
5: 0.00 cm**-1
|
||
|
6: 1411.89 cm**-1
|
||
|
7: 1411.94 cm**-1
|
||
|
8: 1411.99 cm**-1
|
||
|
9: 1567.72 cm**-1
|
||
|
10: 1567.76 cm**-1
|
||
|
11: 2918.15 cm**-1
|
||
|
12: 2930.72 cm**-1
|
||
|
13: 2930.81 cm**-1
|
||
|
14: 2931.00 cm**-1
|
||
|
|
||
|
|
||
|
------------
|
||
|
NORMAL MODES
|
||
|
------------
|
||
|
|
||
|
These modes are the cartesian displacements weighted by the diagonal matrix
|
||
|
M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom
|
||
|
Thus, these vectors are normalized but *not* orthogonal
|
||
|
|
||
|
0 1 2 3 4 5
|
||
|
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
13 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||
|
6 7 8 9 10 11
|
||
|
0 0.096478 0.069838 0.050248 0.000010 0.000019 -0.000055
|
||
|
1 -0.065244 0.108600 -0.025674 -0.000011 0.000021 0.000069
|
||
|
2 -0.056089 -0.006199 0.116297 -0.000008 0.000010 -0.000696
|
||
|
3 0.042224 0.030585 0.022027 0.000012 0.000026 0.500511
|
||
|
4 0.305743 -0.508952 0.120378 0.421773 -0.268725 0.000037
|
||
|
5 0.262927 0.029150 -0.545087 -0.268591 -0.421762 -0.000327
|
||
|
6 -0.446639 -0.356444 -0.016705 0.373142 0.287917 -0.164413
|
||
|
7 0.300443 -0.481324 -0.089851 -0.242470 0.406776 0.157892
|
||
|
8 0.277956 -0.048142 0.037122 -0.227772 0.038608 -0.437685
|
||
|
9 -0.260471 -0.392619 -0.323373 0.062794 -0.467329 -0.168200
|
||
|
10 -0.043851 -0.389729 0.280677 -0.364444 -0.157488 0.306787
|
||
|
11 -0.151661 0.170456 -0.355091 0.336493 -0.083277 0.363261
|
||
|
12 -0.484714 -0.113693 -0.280683 -0.436070 0.179158 -0.167245
|
||
|
13 0.215094 0.085959 -0.005280 0.185271 0.019192 -0.465534
|
||
|
14 0.279111 -0.077600 -0.522699 0.159961 0.466316 0.083050
|
||
|
12 13 14
|
||
|
0 -0.041799 -0.067804 0.034456
|
||
|
1 0.060729 -0.053426 -0.031456
|
||
|
2 0.045783 0.008959 0.073182
|
||
|
3 0.416362 0.672865 -0.337751
|
||
|
4 0.029774 -0.026169 -0.015414
|
||
|
5 0.022464 0.004421 0.035838
|
||
|
6 -0.046171 -0.041860 -0.284313
|
||
|
7 0.054430 -0.017894 0.273820
|
||
|
8 -0.045893 -0.018572 -0.765458
|
||
|
9 0.269741 -0.045258 0.092312
|
||
|
10 -0.499633 -0.004259 -0.152995
|
||
|
11 -0.605082 0.030381 -0.127224
|
||
|
12 -0.141875 0.222181 0.119183
|
||
|
13 -0.308202 0.684923 0.269413
|
||
|
14 0.082978 -0.122986 -0.015165
|
||
|
|
||
|
|
||
|
-----------
|
||
|
IR SPECTRUM
|
||
|
-----------
|
||
|
|
||
|
Mode freq eps Int T**2 TX TY TZ
|
||
|
cm**-1 L/(mol*cm) km/mol a.u.
|
||
|
----------------------------------------------------------------------------
|
||
|
6: 1411.89 0.000735 3.72 0.000163 (-0.001597 -0.008137 -0.009685)
|
||
|
7: 1411.94 0.000436 2.20 0.000096 (-0.001157 -0.003252 0.009192)
|
||
|
8: 1411.99 0.000207 1.05 0.000046 (-0.000833 0.000200 -0.006713)
|
||
|
9: 1567.72 0.001550 7.83 0.000308 (-0.000000 -0.007232 0.016004)
|
||
|
10: 1567.76 0.000015 0.08 0.000003 (-0.000001 -0.000749 0.001567)
|
||
|
11: 2918.15 0.004195 21.20 0.000449 (-0.014320 0.013320 0.008134)
|
||
|
12: 2930.72 0.002517 12.72 0.000268 (-0.011427 0.008458 0.008116)
|
||
|
13: 2930.81 0.006524 32.97 0.000695 (-0.018466 -0.018797 0.000568)
|
||
|
14: 2931.00 0.006335 32.01 0.000674 ( 0.009269 -0.007394 0.023106)
|
||
|
|
||
|
* The epsilon (eps) is given for a Dirac delta lineshape.
|
||
|
** The dipole moment derivative (T) already includes vibrational overlap.
|
||
|
|
||
|
The first frequency considered to be a vibration is 6
|
||
|
The total number of vibrations considered is 9
|
||
|
|
||
|
|
||
|
--------------------------
|
||
|
THERMOCHEMISTRY AT 298.15K
|
||
|
--------------------------
|
||
|
|
||
|
Temperature ... 298.15 K
|
||
|
Pressure ... 1.00 atm
|
||
|
Total Mass ... 16.04 AMU
|
||
|
|
||
|
Throughout the following assumptions are being made:
|
||
|
(1) The electronic state is orbitally nondegenerate
|
||
|
(2) There are no thermally accessible electronically excited states
|
||
|
(3) Hindered rotations indicated by low frequency modes are not
|
||
|
treated as such but are treated as vibrations and this may
|
||
|
cause some error
|
||
|
(4) All equations used are the standard statistical mechanics
|
||
|
equations for an ideal gas
|
||
|
(5) All vibrations are strictly harmonic
|
||
|
|
||
|
freq. 1411.89 E(vib) ... 0.00
|
||
|
freq. 1411.94 E(vib) ... 0.00
|
||
|
freq. 1411.99 E(vib) ... 0.00
|
||
|
freq. 1567.72 E(vib) ... 0.00
|
||
|
freq. 1567.76 E(vib) ... 0.00
|
||
|
freq. 2918.15 E(vib) ... 0.00
|
||
|
freq. 2930.72 E(vib) ... 0.00
|
||
|
freq. 2930.81 E(vib) ... 0.00
|
||
|
freq. 2931.00 E(vib) ... 0.00
|
||
|
|
||
|
------------
|
||
|
INNER ENERGY
|
||
|
------------
|
||
|
|
||
|
The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans)
|
||
|
E(el) - is the total energy from the electronic structure calculation
|
||
|
= E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc)
|
||
|
E(ZPE) - the the zero temperature vibrational energy from the frequency calculation
|
||
|
E(vib) - the the finite temperature correction to E(ZPE) due to population
|
||
|
of excited vibrational states
|
||
|
E(rot) - is the rotational thermal energy
|
||
|
E(trans)- is the translational thermal energy
|
||
|
|
||
|
Summary of contributions to the inner energy U:
|
||
|
Electronic energy ... -4.17445328 Eh
|
||
|
Zero point energy ... 0.04347196 Eh 27.28 kcal/mol
|
||
|
Thermal vibrational correction ... 0.00002868 Eh 0.02 kcal/mol
|
||
|
Thermal rotational correction ... 0.00141627 Eh 0.89 kcal/mol
|
||
|
Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Total thermal energy -4.12812009 Eh
|
||
|
|
||
|
|
||
|
Summary of corrections to the electronic energy:
|
||
|
(perhaps to be used in another calculation)
|
||
|
Total thermal correction 0.00286122 Eh 1.80 kcal/mol
|
||
|
Non-thermal (ZPE) correction 0.04347196 Eh 27.28 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Total correction 0.04633319 Eh 29.07 kcal/mol
|
||
|
|
||
|
|
||
|
--------
|
||
|
ENTHALPY
|
||
|
--------
|
||
|
|
||
|
The enthalpy is H = U + kB*T
|
||
|
kB is Boltzmann's constant
|
||
|
Total free energy ... -4.12812009 Eh
|
||
|
Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Total Enthalpy ... -4.12717588 Eh
|
||
|
|
||
|
|
||
|
Note: Rotational entropy computed according to Herzberg
|
||
|
Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945
|
||
|
Point Group: Td, Symmetry Number: 12
|
||
|
Rotational constants in cm-1: 5.186502 5.186421 5.186221
|
||
|
|
||
|
Vibrational entropy computed according to the QRRHO of S. Grimme
|
||
|
Chem.Eur.J. 2012 18 9955
|
||
|
|
||
|
|
||
|
-------
|
||
|
ENTROPY
|
||
|
-------
|
||
|
|
||
|
The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans))
|
||
|
S(el) - electronic entropy
|
||
|
S(vib) - vibrational entropy
|
||
|
S(rot) - rotational entropy
|
||
|
S(trans)- translational entropy
|
||
|
The entropies will be listed as multiplied by the temperature to get
|
||
|
units of energy
|
||
|
|
||
|
Electronic entropy ... 0.00000000 Eh 0.00 kcal/mol
|
||
|
Vibrational entropy ... 0.00003278 Eh 0.02 kcal/mol
|
||
|
Rotational entropy ... 0.00483337 Eh 3.03 kcal/mol
|
||
|
Translational entropy ... 0.01627961 Eh 10.22 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Final entropy term ... 0.02114577 Eh 13.27 kcal/mol
|
||
|
|
||
|
In case the symmetry of your molecule has not been determined correctly
|
||
|
or in case you have a reason to use a different symmetry number we print
|
||
|
out the resulting rotational entropy values for sn=1,12 :
|
||
|
--------------------------------------------------------
|
||
|
| sn= 1 | S(rot)= 0.00717958 Eh 4.51 kcal/mol|
|
||
|
| sn= 2 | S(rot)= 0.00652512 Eh 4.09 kcal/mol|
|
||
|
| sn= 3 | S(rot)= 0.00614229 Eh 3.85 kcal/mol|
|
||
|
| sn= 4 | S(rot)= 0.00587066 Eh 3.68 kcal/mol|
|
||
|
| sn= 5 | S(rot)= 0.00565998 Eh 3.55 kcal/mol|
|
||
|
| sn= 6 | S(rot)= 0.00548783 Eh 3.44 kcal/mol|
|
||
|
| sn= 7 | S(rot)= 0.00534228 Eh 3.35 kcal/mol|
|
||
|
| sn= 8 | S(rot)= 0.00521621 Eh 3.27 kcal/mol|
|
||
|
| sn= 9 | S(rot)= 0.00510500 Eh 3.20 kcal/mol|
|
||
|
| sn=10 | S(rot)= 0.00500552 Eh 3.14 kcal/mol|
|
||
|
| sn=11 | S(rot)= 0.00491553 Eh 3.08 kcal/mol|
|
||
|
| sn=12 | S(rot)= 0.00483337 Eh 3.03 kcal/mol|
|
||
|
--------------------------------------------------------
|
||
|
|
||
|
|
||
|
-------------------
|
||
|
GIBBS FREE ENERGY
|
||
|
-------------------
|
||
|
|
||
|
The Gibbs free energy is G = H - T*S
|
||
|
|
||
|
Total enthalpy ... -4.12717588 Eh
|
||
|
Total entropy correction ... -0.02114577 Eh -13.27 kcal/mol
|
||
|
-----------------------------------------------------------------------
|
||
|
Final Gibbs free energy ... -4.14832165 Eh
|
||
|
|
||
|
For completeness - the Gibbs free energy minus the electronic energy
|
||
|
G-E(el) ... 0.02613163 Eh 16.40 kcal/mol
|
||
|
|
||
|
|
||
|
|
||
|
Timings for individual modules:
|
||
|
|
||
|
Sum of individual times ... 63.124 sec (= 1.052 min)
|
||
|
Numerical frequency calculation ... 63.060 sec (= 1.051 min) 99.9 %
|
||
|
XTB module ... 0.064 sec (= 0.001 min) 0.1 %
|
||
|
****ORCA TERMINATED NORMALLY****
|
||
|
TOTAL RUN TIME: 0 days 0 hours 1 minutes 3 seconds 189 msec
|