You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
657 lines
23 KiB
657 lines
23 KiB
2 years ago
|
import numpy as np
|
||
|
|
||
|
|
||
|
def cut(atoms, a=(1, 0, 0), b=(0, 1, 0), c=None, clength=None,
|
||
|
origo=(0, 0, 0), nlayers=None, extend=1.0, tolerance=0.01,
|
||
|
maxatoms=None):
|
||
|
"""Cuts out a cell defined by *a*, *b*, *c* and *origo* from a
|
||
|
sufficiently repeated copy of *atoms*.
|
||
|
|
||
|
Typically, this function is used to create slabs of different
|
||
|
sizes and orientations. The vectors *a*, *b* and *c* are in scaled
|
||
|
coordinates and defines the returned cell and should normally be
|
||
|
integer-valued in order to end up with a periodic
|
||
|
structure. However, for systems with sub-translations, like fcc,
|
||
|
integer multiples of 1/2 or 1/3 might also make sense for some
|
||
|
directions (and will be treated correctly).
|
||
|
|
||
|
Parameters:
|
||
|
|
||
|
atoms: Atoms instance
|
||
|
This should correspond to a repeatable unit cell.
|
||
|
a: int | 3 floats
|
||
|
The a-vector in scaled coordinates of the cell to cut out. If
|
||
|
integer, the a-vector will be the scaled vector from *origo* to the
|
||
|
atom with index *a*.
|
||
|
b: int | 3 floats
|
||
|
The b-vector in scaled coordinates of the cell to cut out. If
|
||
|
integer, the b-vector will be the scaled vector from *origo* to the
|
||
|
atom with index *b*.
|
||
|
c: None | int | 3 floats
|
||
|
The c-vector in scaled coordinates of the cell to cut out.
|
||
|
if integer, the c-vector will be the scaled vector from *origo* to
|
||
|
the atom with index *c*.
|
||
|
If *None* it will be along cross(a, b) converted to real space
|
||
|
and normalised with the cube root of the volume. Note that this
|
||
|
in general is not perpendicular to a and b for non-cubic
|
||
|
systems. For cubic systems however, this is redused to
|
||
|
c = cross(a, b).
|
||
|
clength: None | float
|
||
|
If not None, the length of the c-vector will be fixed to
|
||
|
*clength* Angstroms. Should not be used together with
|
||
|
*nlayers*.
|
||
|
origo: int | 3 floats
|
||
|
Position of origo of the new cell in scaled coordinates. If
|
||
|
integer, the position of the atom with index *origo* is used.
|
||
|
nlayers: None | int
|
||
|
If *nlayers* is not *None*, the returned cell will have
|
||
|
*nlayers* atomic layers in the c-direction.
|
||
|
extend: 1 or 3 floats
|
||
|
The *extend* argument scales the effective cell in which atoms
|
||
|
will be included. It must either be three floats or a single
|
||
|
float scaling all 3 directions. By setting to a value just
|
||
|
above one, e.g. 1.05, it is possible to all the corner and
|
||
|
edge atoms in the returned cell. This will of cause make the
|
||
|
returned cell non-repeatable, but is very useful for
|
||
|
visualisation.
|
||
|
tolerance: float
|
||
|
Determines what is defined as a plane. All atoms within
|
||
|
*tolerance* Angstroms from a given plane will be considered to
|
||
|
belong to that plane.
|
||
|
maxatoms: None | int
|
||
|
This option is used to auto-tune *tolerance* when *nlayers* is
|
||
|
given for high zone axis systems. For high zone axis one
|
||
|
needs to reduce *tolerance* in order to distinguise the atomic
|
||
|
planes, resulting in the more atoms will be added and
|
||
|
eventually MemoryError. A too small *tolerance*, on the other
|
||
|
hand, might result in inproper splitting of atomic planes and
|
||
|
that too few layers are returned. If *maxatoms* is not None,
|
||
|
*tolerance* will automatically be gradually reduced until
|
||
|
*nlayers* atomic layers is obtained, when the number of atoms
|
||
|
exceeds *maxatoms*.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> import ase
|
||
|
>>> from ase.spacegroup import crystal
|
||
|
>>>
|
||
|
# Create an aluminium (111) slab with three layers
|
||
|
#
|
||
|
# First an unit cell of Al
|
||
|
>>> a = 4.05
|
||
|
>>> aluminium = crystal('Al', [(0,0,0)], spacegroup=225,
|
||
|
... cellpar=[a, a, a, 90, 90, 90])
|
||
|
>>>
|
||
|
# Then cut out the slab
|
||
|
>>> al111 = cut(aluminium, (1,-1,0), (0,1,-1), nlayers=3)
|
||
|
>>>
|
||
|
# Visualisation of the skutterudite unit cell
|
||
|
#
|
||
|
# Again, create a skutterudite unit cell
|
||
|
>>> a = 9.04
|
||
|
>>> skutterudite = crystal(
|
||
|
... ('Co', 'Sb'),
|
||
|
... basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
|
||
|
... spacegroup=204,
|
||
|
... cellpar=[a, a, a, 90, 90, 90])
|
||
|
>>>
|
||
|
# Then use *origo* to put 'Co' at the corners and *extend* to
|
||
|
# include all corner and edge atoms.
|
||
|
>>> s = cut(skutterudite, origo=(0.25, 0.25, 0.25), extend=1.01)
|
||
|
>>> ase.view(s) # doctest: +SKIP
|
||
|
"""
|
||
|
atoms = atoms.copy()
|
||
|
cell = atoms.cell
|
||
|
|
||
|
if isinstance(origo, int):
|
||
|
origo = atoms.get_scaled_positions()[origo]
|
||
|
origo = np.array(origo, dtype=float)
|
||
|
|
||
|
scaled = (atoms.get_scaled_positions() - origo) % 1.0
|
||
|
scaled %= 1.0 # needed to ensure that all numbers are *less* than one
|
||
|
atoms.set_scaled_positions(scaled)
|
||
|
|
||
|
if isinstance(a, int):
|
||
|
a = scaled[a] - origo
|
||
|
if isinstance(b, int):
|
||
|
b = scaled[b] - origo
|
||
|
if isinstance(c, int):
|
||
|
c = scaled[c] - origo
|
||
|
|
||
|
a = np.array(a, dtype=float)
|
||
|
b = np.array(b, dtype=float)
|
||
|
if c is None:
|
||
|
metric = np.dot(cell, cell.T)
|
||
|
vol = np.sqrt(np.linalg.det(metric))
|
||
|
h = np.cross(a, b)
|
||
|
H = np.linalg.solve(metric.T, h.T)
|
||
|
c = vol * H / vol**(1. / 3.)
|
||
|
c = np.array(c, dtype=float)
|
||
|
|
||
|
if nlayers:
|
||
|
# Recursive increase the length of c until we have at least
|
||
|
# *nlayers* atomic layers parallel to the a-b plane
|
||
|
while True:
|
||
|
at = cut(atoms, a, b, c, origo=origo, extend=extend,
|
||
|
tolerance=tolerance)
|
||
|
scaled = at.get_scaled_positions()
|
||
|
d = scaled[:, 2]
|
||
|
keys = np.argsort(d)
|
||
|
ikeys = np.argsort(keys)
|
||
|
tol = tolerance
|
||
|
while True:
|
||
|
mask = np.concatenate(([True], np.diff(d[keys]) > tol))
|
||
|
tags = np.cumsum(mask)[ikeys] - 1
|
||
|
levels = d[keys][mask]
|
||
|
if (maxatoms is None or len(at) < maxatoms or
|
||
|
len(levels) > nlayers):
|
||
|
break
|
||
|
tol *= 0.9
|
||
|
if len(levels) > nlayers:
|
||
|
break
|
||
|
c *= 2
|
||
|
|
||
|
at.cell[2] *= levels[nlayers]
|
||
|
return at[tags < nlayers]
|
||
|
|
||
|
newcell = np.dot(np.array([a, b, c]), cell)
|
||
|
if nlayers is None and clength is not None:
|
||
|
newcell[2, :] *= clength / np.linalg.norm(newcell[2])
|
||
|
|
||
|
# Create a new atoms object, repeated and translated such that
|
||
|
# it completely covers the new cell
|
||
|
scorners_newcell = np.array([[0., 0., 0.], [0., 0., 1.],
|
||
|
[0., 1., 0.], [0., 1., 1.],
|
||
|
[1., 0., 0.], [1., 0., 1.],
|
||
|
[1., 1., 0.], [1., 1., 1.]])
|
||
|
corners = np.dot(scorners_newcell, newcell * extend)
|
||
|
scorners = np.linalg.solve(cell.T, corners.T).T
|
||
|
rep = np.ceil(scorners.ptp(axis=0)).astype('int') + 1
|
||
|
trans = np.dot(np.floor(scorners.min(axis=0)), cell)
|
||
|
atoms = atoms.repeat(rep)
|
||
|
atoms.translate(trans)
|
||
|
atoms.set_cell(newcell)
|
||
|
|
||
|
# Mask out atoms outside new cell
|
||
|
stol = 0.1 * tolerance # scaled tolerance, XXX
|
||
|
maskcell = atoms.cell * extend
|
||
|
sp = np.linalg.solve(maskcell.T, (atoms.positions).T).T
|
||
|
mask = np.all(np.logical_and(-stol <= sp, sp < 1 - stol), axis=1)
|
||
|
atoms = atoms[mask]
|
||
|
return atoms
|
||
|
|
||
|
|
||
|
class IncompatibleCellError(ValueError):
|
||
|
"""Exception raised if stacking fails due to incompatible cells
|
||
|
between *atoms1* and *atoms2*."""
|
||
|
pass
|
||
|
|
||
|
|
||
|
def stack(atoms1, atoms2, axis=2, cell=None, fix=0.5,
|
||
|
maxstrain=0.5, distance=None, reorder=False,
|
||
|
output_strained=False):
|
||
|
"""Return a new Atoms instance with *atoms2* stacked on top of
|
||
|
*atoms1* along the given axis. Periodicity in all directions is
|
||
|
ensured.
|
||
|
|
||
|
The size of the final cell is determined by *cell*, except
|
||
|
that the length alongh *axis* will be the sum of
|
||
|
*atoms1.cell[axis]* and *atoms2.cell[axis]*. If *cell* is None,
|
||
|
it will be interpolated between *atoms1* and *atoms2*, where
|
||
|
*fix* determines their relative weight. Hence, if *fix* equals
|
||
|
zero, the final cell will be determined purely from *atoms1* and
|
||
|
if *fix* equals one, it will be determined purely from
|
||
|
*atoms2*.
|
||
|
|
||
|
An ase.geometry.IncompatibleCellError exception is raised if the
|
||
|
cells of *atoms1* and *atoms2* are incompatible, e.g. if the far
|
||
|
corner of the unit cell of either *atoms1* or *atoms2* is
|
||
|
displaced more than *maxstrain*. Setting *maxstrain* to None
|
||
|
disables this check.
|
||
|
|
||
|
If *distance* is not None, the size of the final cell, along the
|
||
|
direction perpendicular to the interface, will be adjusted such
|
||
|
that the distance between the closest atoms in *atoms1* and
|
||
|
*atoms2* will be equal to *distance*. This option uses
|
||
|
scipy.optimize.fmin() and hence require scipy to be installed.
|
||
|
|
||
|
If *reorder* is True, then the atoms will be reordered such that
|
||
|
all atoms with the same symbol will follow sequencially after each
|
||
|
other, eg: 'Al2MnAl10Fe' -> 'Al12FeMn'.
|
||
|
|
||
|
If *output_strained* is True, then the strained versions of
|
||
|
*atoms1* and *atoms2* are returned in addition to the stacked
|
||
|
structure.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> import ase
|
||
|
>>> from ase.spacegroup import crystal
|
||
|
>>>
|
||
|
# Create an Ag(110)-Si(110) interface with three atomic layers
|
||
|
# on each side.
|
||
|
>>> a_ag = 4.09
|
||
|
>>> ag = crystal(['Ag'], basis=[(0,0,0)], spacegroup=225,
|
||
|
... cellpar=[a_ag, a_ag, a_ag, 90., 90., 90.])
|
||
|
>>> ag110 = cut(ag, (0, 0, 3), (-1.5, 1.5, 0), nlayers=3)
|
||
|
>>>
|
||
|
>>> a_si = 5.43
|
||
|
>>> si = crystal(['Si'], basis=[(0,0,0)], spacegroup=227,
|
||
|
... cellpar=[a_si, a_si, a_si, 90., 90., 90.])
|
||
|
>>> si110 = cut(si, (0, 0, 2), (-1, 1, 0), nlayers=3)
|
||
|
>>>
|
||
|
>>> interface = stack(ag110, si110, maxstrain=1)
|
||
|
>>> ase.view(interface) # doctest: +SKIP
|
||
|
>>>
|
||
|
# Once more, this time adjusted such that the distance between
|
||
|
# the closest Ag and Si atoms will be 2.3 Angstrom (requires scipy).
|
||
|
>>> interface2 = stack(ag110, si110,
|
||
|
... maxstrain=1, distance=2.3) # doctest:+ELLIPSIS
|
||
|
Optimization terminated successfully.
|
||
|
...
|
||
|
>>> ase.view(interface2) # doctest: +SKIP
|
||
|
"""
|
||
|
atoms1 = atoms1.copy()
|
||
|
atoms2 = atoms2.copy()
|
||
|
|
||
|
for atoms in [atoms1, atoms2]:
|
||
|
if not atoms.cell[axis].any():
|
||
|
atoms.center(vacuum=0.0, axis=axis)
|
||
|
|
||
|
if (np.sign(np.linalg.det(atoms1.cell)) !=
|
||
|
np.sign(np.linalg.det(atoms2.cell))):
|
||
|
raise IncompatibleCellError('Cells of *atoms1* and *atoms2* must have '
|
||
|
'same handedness.')
|
||
|
|
||
|
c1 = np.linalg.norm(atoms1.cell[axis])
|
||
|
c2 = np.linalg.norm(atoms2.cell[axis])
|
||
|
if cell is None:
|
||
|
cell1 = atoms1.cell.copy()
|
||
|
cell2 = atoms2.cell.copy()
|
||
|
cell1[axis] /= c1
|
||
|
cell2[axis] /= c2
|
||
|
cell = cell1 + fix * (cell2 - cell1)
|
||
|
cell[axis] /= np.linalg.norm(cell[axis])
|
||
|
cell1 = cell.copy()
|
||
|
cell2 = cell.copy()
|
||
|
cell1[axis] *= c1
|
||
|
cell2[axis] *= c2
|
||
|
|
||
|
if maxstrain:
|
||
|
strain1 = np.sqrt(((cell1 - atoms1.cell).sum(axis=0)**2).sum())
|
||
|
strain2 = np.sqrt(((cell2 - atoms2.cell).sum(axis=0)**2).sum())
|
||
|
if strain1 > maxstrain or strain2 > maxstrain:
|
||
|
raise IncompatibleCellError(
|
||
|
'*maxstrain* exceeded. *atoms1* strained %f and '
|
||
|
'*atoms2* strained %f.' % (strain1, strain2))
|
||
|
|
||
|
atoms1.set_cell(cell1, scale_atoms=True)
|
||
|
atoms2.set_cell(cell2, scale_atoms=True)
|
||
|
if output_strained:
|
||
|
atoms1_strained = atoms1.copy()
|
||
|
atoms2_strained = atoms2.copy()
|
||
|
|
||
|
if distance is not None:
|
||
|
from scipy.optimize import fmin
|
||
|
|
||
|
def mindist(pos1, pos2):
|
||
|
n1 = len(pos1)
|
||
|
n2 = len(pos2)
|
||
|
idx1 = np.arange(n1).repeat(n2)
|
||
|
idx2 = np.tile(np.arange(n2), n1)
|
||
|
return np.sqrt(((pos1[idx1] - pos2[idx2])**2).sum(axis=1).min())
|
||
|
|
||
|
def func(x):
|
||
|
t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7]
|
||
|
pos1 = atoms1.positions + t1
|
||
|
pos2 = atoms2.positions + t2
|
||
|
d1 = mindist(pos1, pos2 + (h1 + 1.0) * atoms1.cell[axis])
|
||
|
d2 = mindist(pos2, pos1 + (h2 + 1.0) * atoms2.cell[axis])
|
||
|
return (d1 - distance)**2 + (d2 - distance)**2
|
||
|
|
||
|
atoms1.center()
|
||
|
atoms2.center()
|
||
|
x0 = np.zeros((8,))
|
||
|
x = fmin(func, x0)
|
||
|
t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7]
|
||
|
atoms1.translate(t1)
|
||
|
atoms2.translate(t2)
|
||
|
atoms1.cell[axis] *= 1.0 + h1
|
||
|
atoms2.cell[axis] *= 1.0 + h2
|
||
|
|
||
|
atoms2.translate(atoms1.cell[axis])
|
||
|
atoms1.cell[axis] += atoms2.cell[axis]
|
||
|
atoms1.extend(atoms2)
|
||
|
|
||
|
if reorder:
|
||
|
atoms1 = sort(atoms1)
|
||
|
|
||
|
if output_strained:
|
||
|
return atoms1, atoms1_strained, atoms2_strained
|
||
|
else:
|
||
|
return atoms1
|
||
|
|
||
|
|
||
|
def rotation_matrix(a1, a2, b1, b2):
|
||
|
"""Returns a rotation matrix that rotates the vectors *a1* in the
|
||
|
direction of *a2* and *b1* in the direction of *b2*.
|
||
|
|
||
|
In the case that the angle between *a2* and *b2* is not the same
|
||
|
as between *a1* and *b1*, a proper rotation matrix will anyway be
|
||
|
constructed by first rotate *b2* in the *b1*, *b2* plane.
|
||
|
"""
|
||
|
a1 = np.asarray(a1, dtype=float) / np.linalg.norm(a1)
|
||
|
b1 = np.asarray(b1, dtype=float) / np.linalg.norm(b1)
|
||
|
c1 = np.cross(a1, b1)
|
||
|
c1 /= np.linalg.norm(c1) # clean out rounding errors...
|
||
|
|
||
|
a2 = np.asarray(a2, dtype=float) / np.linalg.norm(a2)
|
||
|
b2 = np.asarray(b2, dtype=float) / np.linalg.norm(b2)
|
||
|
c2 = np.cross(a2, b2)
|
||
|
c2 /= np.linalg.norm(c2) # clean out rounding errors...
|
||
|
|
||
|
# Calculate rotated *b2*
|
||
|
theta = np.arccos(np.dot(a2, b2)) - np.arccos(np.dot(a1, b1))
|
||
|
b3 = np.sin(theta) * a2 + np.cos(theta) * b2
|
||
|
b3 /= np.linalg.norm(b3) # clean out rounding errors...
|
||
|
|
||
|
A1 = np.array([a1, b1, c1])
|
||
|
A2 = np.array([a2, b3, c2])
|
||
|
R = np.linalg.solve(A1, A2).T
|
||
|
return R
|
||
|
|
||
|
|
||
|
def rotate(atoms, a1, a2, b1, b2, rotate_cell=True, center=(0, 0, 0)):
|
||
|
"""Rotate *atoms*, such that *a1* will be rotated in the direction
|
||
|
of *a2* and *b1* in the direction of *b2*. The point at *center*
|
||
|
is fixed. Use *center='COM'* to fix the center of mass. If
|
||
|
*rotate_cell* is true, the cell will be rotated together with the
|
||
|
atoms.
|
||
|
|
||
|
Note that the 000-corner of the cell is by definition fixed at
|
||
|
origo. Hence, setting *center* to something other than (0, 0, 0)
|
||
|
will rotate the atoms out of the cell, even if *rotate_cell* is
|
||
|
True.
|
||
|
"""
|
||
|
if isinstance(center, str) and center.lower() == 'com':
|
||
|
center = atoms.get_center_of_mass()
|
||
|
|
||
|
R = rotation_matrix(a1, a2, b1, b2)
|
||
|
atoms.positions[:] = np.dot(atoms.positions - center, R.T) + center
|
||
|
|
||
|
if rotate_cell:
|
||
|
atoms.cell[:] = np.dot(atoms.cell, R.T)
|
||
|
|
||
|
|
||
|
def minimize_tilt_ij(atoms, modified=1, fixed=0, fold_atoms=True):
|
||
|
"""Minimize the tilt angle for two given axes.
|
||
|
|
||
|
The problem is underdetermined. Therefore one can choose one axis
|
||
|
that is kept fixed.
|
||
|
"""
|
||
|
|
||
|
orgcell_cc = atoms.get_cell()
|
||
|
pbc_c = atoms.get_pbc()
|
||
|
i = fixed
|
||
|
j = modified
|
||
|
if not (pbc_c[i] and pbc_c[j]):
|
||
|
raise RuntimeError('Axes have to be periodic')
|
||
|
|
||
|
prod_cc = np.dot(orgcell_cc, orgcell_cc.T)
|
||
|
cell_cc = 1. * orgcell_cc
|
||
|
nji = np.floor(- prod_cc[i, j] / prod_cc[i, i] + 0.5)
|
||
|
cell_cc[j] = orgcell_cc[j] + nji * cell_cc[i]
|
||
|
|
||
|
# sanity check
|
||
|
def volume(cell):
|
||
|
return np.abs(np.dot(cell[2], np.cross(cell[0], cell[1])))
|
||
|
V = volume(cell_cc)
|
||
|
assert(abs(volume(orgcell_cc) - V) / V < 1.e-10)
|
||
|
|
||
|
atoms.set_cell(cell_cc)
|
||
|
|
||
|
if fold_atoms:
|
||
|
atoms.wrap()
|
||
|
|
||
|
|
||
|
def minimize_tilt(atoms, order=range(3), fold_atoms=True):
|
||
|
"""Minimize the tilt angles of the unit cell."""
|
||
|
pbc_c = atoms.get_pbc()
|
||
|
|
||
|
for i1, c1 in enumerate(order):
|
||
|
for c2 in order[i1 + 1:]:
|
||
|
if pbc_c[c1] and pbc_c[c2]:
|
||
|
minimize_tilt_ij(atoms, c1, c2, fold_atoms)
|
||
|
|
||
|
|
||
|
def niggli_reduce_cell(cell, epsfactor=None):
|
||
|
from ase.geometry import cellpar_to_cell
|
||
|
|
||
|
if epsfactor is None:
|
||
|
epsfactor = 1e-5
|
||
|
eps = epsfactor * abs(np.linalg.det(cell))**(1./3.)
|
||
|
|
||
|
cell = np.asarray(cell)
|
||
|
|
||
|
I3 = np.eye(3, dtype=int)
|
||
|
I6 = np.eye(6, dtype=int)
|
||
|
|
||
|
C = I3.copy()
|
||
|
D = I6.copy()
|
||
|
|
||
|
g0 = np.zeros(6, dtype=float)
|
||
|
g0[0] = np.dot(cell[0], cell[0])
|
||
|
g0[1] = np.dot(cell[1], cell[1])
|
||
|
g0[2] = np.dot(cell[2], cell[2])
|
||
|
g0[3] = 2 * np.dot(cell[1], cell[2])
|
||
|
g0[4] = 2 * np.dot(cell[0], cell[2])
|
||
|
g0[5] = 2 * np.dot(cell[0], cell[1])
|
||
|
|
||
|
g = np.dot(D, g0)
|
||
|
|
||
|
def lt(x, y, eps=eps):
|
||
|
return x < y - eps
|
||
|
|
||
|
def gt(x, y, eps=eps):
|
||
|
return lt(y, x, eps)
|
||
|
|
||
|
def eq(x, y, eps=eps):
|
||
|
return not (lt(x, y, eps) or gt(x, y, eps))
|
||
|
|
||
|
for _ in range(10000):
|
||
|
if (gt(g[0], g[1])
|
||
|
or (eq(g[0], g[1]) and gt(abs(g[3]), abs(g[4])))):
|
||
|
C = np.dot(C, -I3[[1, 0, 2]])
|
||
|
D = np.dot(I6[[1, 0, 2, 4, 3, 5]], D)
|
||
|
g = np.dot(D, g0)
|
||
|
continue
|
||
|
elif (gt(g[1], g[2])
|
||
|
or (eq(g[1], g[2]) and gt(abs(g[4]), abs(g[5])))):
|
||
|
C = np.dot(C, -I3[[0, 2, 1]])
|
||
|
D = np.dot(I6[[0, 2, 1, 3, 5, 4]], D)
|
||
|
g = np.dot(D, g0)
|
||
|
continue
|
||
|
|
||
|
lmn = np.array(gt(g[3:], 0, eps=eps/2), dtype=int)
|
||
|
lmn -= np.array(lt(g[3:], 0, eps=eps/2), dtype=int)
|
||
|
|
||
|
if lmn.prod() == 1:
|
||
|
ijk = lmn.copy()
|
||
|
for idx in range(3):
|
||
|
if ijk[idx] == 0:
|
||
|
ijk[idx] = 1
|
||
|
else:
|
||
|
ijk = np.ones(3, dtype=int)
|
||
|
if np.any(lmn != -1):
|
||
|
r = None
|
||
|
for idx in range(3):
|
||
|
if lmn[idx] == 1:
|
||
|
ijk[idx] = -1
|
||
|
elif lmn[idx] == 0:
|
||
|
r = idx
|
||
|
if ijk.prod() == -1:
|
||
|
ijk[r] = -1
|
||
|
|
||
|
C *= ijk[np.newaxis]
|
||
|
|
||
|
D[3] *= ijk[1] * ijk[2]
|
||
|
D[4] *= ijk[0] * ijk[2]
|
||
|
D[5] *= ijk[0] * ijk[1]
|
||
|
g = np.dot(D, g0)
|
||
|
|
||
|
if (gt(abs(g[3]), g[1])
|
||
|
or (eq(g[3], g[1]) and lt(2 * g[4], g[5]))
|
||
|
or (eq(g[3], -g[1]) and lt(g[5], 0))):
|
||
|
s = int(np.sign(g[3]))
|
||
|
|
||
|
A = I3.copy()
|
||
|
A[1, 2] = -s
|
||
|
C = np.dot(C, A)
|
||
|
|
||
|
B = I6.copy()
|
||
|
B[2, 1] = 1
|
||
|
B[2, 3] = -s
|
||
|
B[3, 1] = -2 * s
|
||
|
B[4, 5] = -s
|
||
|
D = np.dot(B, D)
|
||
|
g = np.dot(D, g0)
|
||
|
elif (gt(abs(g[4]), g[0])
|
||
|
or (eq(g[4], g[0]) and lt(2 * g[3], g[5]))
|
||
|
or (eq(g[4], -g[0]) and lt(g[5], 0))):
|
||
|
s = int(np.sign(g[4]))
|
||
|
|
||
|
A = I3.copy()
|
||
|
A[0, 2] = -s
|
||
|
C = np.dot(C, A)
|
||
|
|
||
|
B = I6.copy()
|
||
|
B[2, 0] = 1
|
||
|
B[2, 4] = -s
|
||
|
B[3, 5] = -s
|
||
|
B[4, 0] = -2 * s
|
||
|
D = np.dot(B, D)
|
||
|
g = np.dot(D, g0)
|
||
|
elif (gt(abs(g[5]), g[0])
|
||
|
or (eq(g[5], g[0]) and lt(2 * g[3], g[4]))
|
||
|
or (eq(g[5], -g[0]) and lt(g[4], 0))):
|
||
|
s = int(np.sign(g[5]))
|
||
|
|
||
|
A = I3.copy()
|
||
|
A[0, 1] = -s
|
||
|
C = np.dot(C, A)
|
||
|
|
||
|
B = I6.copy()
|
||
|
B[1, 0] = 1
|
||
|
B[1, 5] = -s
|
||
|
B[3, 4] = -s
|
||
|
B[5, 0] = -2 * s
|
||
|
D = np.dot(B, D)
|
||
|
g = np.dot(D, g0)
|
||
|
elif (lt(g[[0, 1, 3, 4, 5]].sum(), 0)
|
||
|
or (eq(g[[0, 1, 3, 4, 5]].sum(), 0)
|
||
|
and gt(2 * (g[0] + g[4]) + g[5], 0))):
|
||
|
A = I3.copy()
|
||
|
A[:, 2] = 1
|
||
|
C = np.dot(C, A)
|
||
|
|
||
|
B = I6.copy()
|
||
|
B[2, :] = 1
|
||
|
B[3, 1] = 2
|
||
|
B[3, 5] = 1
|
||
|
B[4, 0] = 2
|
||
|
B[4, 5] = 1
|
||
|
D = np.dot(B, D)
|
||
|
g = np.dot(D, g0)
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
raise RuntimeError('Niggli reduction not done in 10000 steps!\n'
|
||
|
'cell={}\n'
|
||
|
'operation={}'
|
||
|
.format(cell.tolist(), C.tolist()))
|
||
|
|
||
|
abc = np.sqrt(g[:3])
|
||
|
# Prevent division by zero e.g. for cell==zeros((3, 3)):
|
||
|
abcprod = max(abc.prod(), 1e-100)
|
||
|
cosangles = abc * g[3:] / (2 * abcprod)
|
||
|
angles = 180 * np.arccos(cosangles) / np.pi
|
||
|
newcell = np.array(cellpar_to_cell(np.concatenate([abc, angles])),
|
||
|
dtype=float)
|
||
|
|
||
|
return newcell, C
|
||
|
|
||
|
|
||
|
def update_cell_and_positions(atoms, new_cell, op):
|
||
|
"""Helper method for transforming cell and positions of atoms object."""
|
||
|
scpos = np.linalg.solve(op, atoms.get_scaled_positions().T).T
|
||
|
scpos %= 1.0
|
||
|
scpos %= 1.0
|
||
|
|
||
|
atoms.set_cell(new_cell)
|
||
|
atoms.set_scaled_positions(scpos)
|
||
|
|
||
|
|
||
|
def niggli_reduce(atoms):
|
||
|
"""Convert the supplied atoms object's unit cell into its
|
||
|
maximally-reduced Niggli unit cell. Even if the unit cell is already
|
||
|
maximally reduced, it will be converted into its unique Niggli unit cell.
|
||
|
This will also wrap all atoms into the new unit cell.
|
||
|
|
||
|
References:
|
||
|
|
||
|
Niggli, P. "Krystallographische und strukturtheoretische Grundbegriffe.
|
||
|
Handbuch der Experimentalphysik", 1928, Vol. 7, Part 1, 108-176.
|
||
|
|
||
|
Krivy, I. and Gruber, B., "A Unified Algorithm for Determining the
|
||
|
Reduced (Niggli) Cell", Acta Cryst. 1976, A32, 297-298.
|
||
|
|
||
|
Grosse-Kunstleve, R.W.; Sauter, N. K.; and Adams, P. D. "Numerically
|
||
|
stable algorithms for the computation of reduced unit cells", Acta Cryst.
|
||
|
2004, A60, 1-6.
|
||
|
"""
|
||
|
|
||
|
assert all(atoms.pbc), 'Can only reduce 3d periodic unit cells!'
|
||
|
new_cell, op = niggli_reduce_cell(atoms.cell)
|
||
|
update_cell_and_positions(atoms, new_cell, op)
|
||
|
|
||
|
|
||
|
def reduce_lattice(atoms, eps=2e-4):
|
||
|
"""Reduce atoms object to canonical lattice.
|
||
|
|
||
|
This changes the cell and positions such that the atoms object has
|
||
|
the canonical form used for defining band paths but is otherwise
|
||
|
physically equivalent. The eps parameter is used as a tolerance
|
||
|
for determining the cell's Bravais lattice."""
|
||
|
from ase.geometry.bravais_type_engine import identify_lattice
|
||
|
niggli_reduce(atoms)
|
||
|
lat, op = identify_lattice(atoms.cell, eps=eps)
|
||
|
update_cell_and_positions(atoms, lat.tocell(), np.linalg.inv(op))
|
||
|
|
||
|
|
||
|
def sort(atoms, tags=None):
|
||
|
"""Return a new Atoms object with sorted atomic order. The default
|
||
|
is to order according to chemical symbols, but if *tags* is not
|
||
|
None, it will be used instead. A stable sorting algorithm is used.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> from ase.build import bulk
|
||
|
>>> # Two unit cells of NaCl:
|
||
|
>>> a = 5.64
|
||
|
>>> nacl = bulk('NaCl', 'rocksalt', a=a) * (2, 1, 1)
|
||
|
>>> nacl.get_chemical_symbols()
|
||
|
['Na', 'Cl', 'Na', 'Cl']
|
||
|
>>> nacl_sorted = sort(nacl)
|
||
|
>>> nacl_sorted.get_chemical_symbols()
|
||
|
['Cl', 'Cl', 'Na', 'Na']
|
||
|
>>> np.all(nacl_sorted.cell == nacl.cell)
|
||
|
True
|
||
|
"""
|
||
|
if tags is None:
|
||
|
tags = atoms.get_chemical_symbols()
|
||
|
else:
|
||
|
tags = list(tags)
|
||
|
deco = sorted([(tag, i) for i, tag in enumerate(tags)])
|
||
|
indices = [i for tag, i in deco]
|
||
|
return atoms[indices]
|