You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
475 lines
19 KiB
475 lines
19 KiB
2 years ago
|
"""Bravais.py - class for generating Bravais lattices etc.
|
||
|
|
||
|
This is a base class for numerous classes setting up pieces of crystal.
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
from typing import Optional, Sequence
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from cmmde_atoms import Atoms
|
||
|
import cmmde_data
|
||
|
|
||
|
|
||
|
class Bravais:
|
||
|
"""Bravais lattice factory.
|
||
|
|
||
|
This is a base class for the objects producing various lattices
|
||
|
(SC, FCC, ...).
|
||
|
"""
|
||
|
|
||
|
# The following methods are NOT defined here, but must be defined
|
||
|
# in classes inhering from Bravais:
|
||
|
# get_lattice_constant
|
||
|
# make_crystal_basis
|
||
|
# The following class attributes are NOT defined here, but must be defined
|
||
|
# in classes inhering from Bravais:
|
||
|
# int_basis
|
||
|
# inverse_basis
|
||
|
|
||
|
other = {0: (1, 2), 1: (2, 0), 2: (0, 1)}
|
||
|
|
||
|
# For Bravais lattices with a basis, set the basis here. Leave as
|
||
|
# None if no basis is present.
|
||
|
bravais_basis: Optional[Sequence[Sequence[float]]] = None
|
||
|
|
||
|
# If more than one type of element appear in the crystal, give the
|
||
|
# order here. For example, if two elements appear in a 3:1 ratio,
|
||
|
# bravais_basis could contain four vectors, and element_basis
|
||
|
# could be (0,0,1,0) - the third atom in the basis is different
|
||
|
# from the other three. Leave as None if all atoms are of the
|
||
|
# same type.
|
||
|
element_basis: Optional[Sequence[int]] = None
|
||
|
|
||
|
# How small numbers should be considered zero in the unit cell?
|
||
|
chop_tolerance = 1e-10
|
||
|
|
||
|
def __call__(self, symbol,
|
||
|
directions=(None, None, None), miller=(None, None, None),
|
||
|
size=(1, 1, 1), latticeconstant=None,
|
||
|
pbc=True, align=True, debug=0):
|
||
|
"Create a lattice."
|
||
|
self.size = size
|
||
|
self.pbc = pbc
|
||
|
self.debug = debug
|
||
|
self.process_element(symbol)
|
||
|
self.find_directions(directions, miller)
|
||
|
if self.debug:
|
||
|
self.print_directions_and_miller()
|
||
|
self.convert_to_natural_basis()
|
||
|
if self.debug >= 2:
|
||
|
self.print_directions_and_miller(" (natural basis)")
|
||
|
if latticeconstant is None:
|
||
|
if self.element_basis is None:
|
||
|
self.latticeconstant = self.get_lattice_constant()
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"A lattice constant must be specified for a compound")
|
||
|
else:
|
||
|
self.latticeconstant = latticeconstant
|
||
|
if self.debug:
|
||
|
print(
|
||
|
"Expected number of atoms in unit cell:",
|
||
|
self.calc_num_atoms())
|
||
|
if self.debug >= 2:
|
||
|
print("Bravais lattice basis:", self.bravais_basis)
|
||
|
if self.bravais_basis is not None:
|
||
|
print(" ... in natural basis:", self.natural_bravais_basis)
|
||
|
self.make_crystal_basis()
|
||
|
self.make_unit_cell()
|
||
|
if align:
|
||
|
self.align()
|
||
|
return self.make_list_of_atoms()
|
||
|
|
||
|
def align(self):
|
||
|
"Align the first axis along x-axis and the second in the x-y plane."
|
||
|
degree = 180 / np.pi
|
||
|
if self.debug >= 2:
|
||
|
print("Basis before alignment:")
|
||
|
print(self.basis)
|
||
|
if self.basis[0][0]**2 + \
|
||
|
self.basis[0][2]**2 < 0.01 * self.basis[0][1]**2:
|
||
|
# First basis vector along y axis - rotate 90 deg along z
|
||
|
t = np.array([[0, -1, 0],
|
||
|
[1, 0, 0],
|
||
|
[0, 0, 1]], float)
|
||
|
self.basis = np.dot(self.basis, t)
|
||
|
transf = t
|
||
|
if self.debug >= 2:
|
||
|
print("Rotating -90 degrees around z axis for numerical "
|
||
|
"stability.")
|
||
|
print(self.basis)
|
||
|
else:
|
||
|
transf = np.identity(3, float)
|
||
|
assert abs(np.linalg.det(transf) - 1) < 1e-6
|
||
|
# Rotate first basis vector into xy plane
|
||
|
theta = math.atan2(self.basis[0, 2], self.basis[0, 0])
|
||
|
t = np.array([[np.cos(theta), 0, -np.sin(theta)],
|
||
|
[0, 1, 0],
|
||
|
[np.sin(theta), 0, np.cos(theta)]])
|
||
|
self.basis = np.dot(self.basis, t)
|
||
|
transf = np.dot(transf, t)
|
||
|
if self.debug >= 2:
|
||
|
print("Rotating %f degrees around y axis." % (-theta * degree,))
|
||
|
print(self.basis)
|
||
|
assert abs(np.linalg.det(transf) - 1) < 1e-6
|
||
|
# Rotate first basis vector to point along x axis
|
||
|
theta = math.atan2(self.basis[0, 1], self.basis[0, 0])
|
||
|
t = np.array([[np.cos(theta), -np.sin(theta), 0],
|
||
|
[np.sin(theta), np.cos(theta), 0],
|
||
|
[0, 0, 1]])
|
||
|
self.basis = np.dot(self.basis, t)
|
||
|
transf = np.dot(transf, t)
|
||
|
if self.debug >= 2:
|
||
|
print("Rotating %f degrees around z axis." % (-theta * degree,))
|
||
|
print(self.basis)
|
||
|
assert abs(np.linalg.det(transf) - 1) < 1e-6
|
||
|
# Rotate second basis vector into xy plane
|
||
|
theta = math.atan2(self.basis[1, 2], self.basis[1, 1])
|
||
|
t = np.array([[1, 0, 0],
|
||
|
[0, np.cos(theta), -np.sin(theta)],
|
||
|
[0, np.sin(theta), np.cos(theta)]])
|
||
|
self.basis = np.dot(self.basis, t)
|
||
|
transf = np.dot(transf, t)
|
||
|
if self.debug >= 2:
|
||
|
print("Rotating %f degrees around x axis." % (-theta * degree,))
|
||
|
print(self.basis)
|
||
|
assert abs(np.linalg.det(transf) - 1) < 1e-6
|
||
|
# Now we better rotate the atoms as well
|
||
|
self.atoms = np.dot(self.atoms, transf)
|
||
|
# ... and rotate miller_basis
|
||
|
self.miller_basis = np.dot(self.miller_basis, transf)
|
||
|
|
||
|
def make_list_of_atoms(self):
|
||
|
"Repeat the unit cell."
|
||
|
nrep = self.size[0] * self.size[1] * self.size[2]
|
||
|
if nrep <= 0:
|
||
|
raise ValueError(
|
||
|
"Cannot create a non-positive number of unit cells")
|
||
|
# Now the unit cells must be merged.
|
||
|
a2 = []
|
||
|
e2 = []
|
||
|
for i in range(self.size[0]):
|
||
|
offset = self.basis[0] * i
|
||
|
a2.append(self.atoms + offset[np.newaxis, :])
|
||
|
e2.append(self.elements)
|
||
|
atoms = np.concatenate(a2)
|
||
|
elements = np.concatenate(e2)
|
||
|
a2 = []
|
||
|
e2 = []
|
||
|
for j in range(self.size[1]):
|
||
|
offset = self.basis[1] * j
|
||
|
a2.append(atoms + offset[np.newaxis, :])
|
||
|
e2.append(elements)
|
||
|
atoms = np.concatenate(a2)
|
||
|
elements = np.concatenate(e2)
|
||
|
a2 = []
|
||
|
e2 = []
|
||
|
for k in range(self.size[2]):
|
||
|
offset = self.basis[2] * k
|
||
|
a2.append(atoms + offset[np.newaxis, :])
|
||
|
e2.append(elements)
|
||
|
atoms = np.concatenate(a2)
|
||
|
elements = np.concatenate(e2)
|
||
|
del a2, e2
|
||
|
assert len(atoms) == nrep * len(self.atoms)
|
||
|
basis = np.array([[self.size[0], 0, 0],
|
||
|
[0, self.size[1], 0],
|
||
|
[0, 0, self.size[2]]])
|
||
|
basis = np.dot(basis, self.basis)
|
||
|
|
||
|
# Tiny elements should be replaced by zero. The cutoff is
|
||
|
# determined by chop_tolerance which is a class attribute.
|
||
|
basis = np.where(np.abs(basis) < self.chop_tolerance,
|
||
|
0.0, basis)
|
||
|
|
||
|
# None should be replaced, and memory should be freed.
|
||
|
lattice = Lattice(positions=atoms, cell=basis, numbers=elements,
|
||
|
pbc=self.pbc)
|
||
|
lattice.millerbasis = self.miller_basis
|
||
|
# Add info for lattice.surface.AddAdsorbate
|
||
|
lattice._addsorbate_info_size = np.array(self.size[:2])
|
||
|
return lattice
|
||
|
|
||
|
def process_element(self, element):
|
||
|
"Extract atomic number from element"
|
||
|
# The types that can be elements: integers and strings
|
||
|
if self.element_basis is None:
|
||
|
if isinstance(element, str):
|
||
|
self.atomicnumber = cmmde_data.atomic_numbers[element]
|
||
|
elif isinstance(element, int):
|
||
|
self.atomicnumber = element
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
"The symbol argument must be a string or an atomic number.")
|
||
|
else:
|
||
|
atomicnumber = []
|
||
|
try:
|
||
|
if len(element) != max(self.element_basis) + 1:
|
||
|
oops = True
|
||
|
else:
|
||
|
oops = False
|
||
|
except TypeError:
|
||
|
oops = True
|
||
|
if oops:
|
||
|
raise TypeError(
|
||
|
("The symbol argument must be a sequence of length %d"
|
||
|
+ " (one for each kind of lattice position")
|
||
|
% (max(self.element_basis) + 1,))
|
||
|
for e in element:
|
||
|
if isinstance(e, str):
|
||
|
atomicnumber.append(cmmde_data.atomic_numbers[e])
|
||
|
elif isinstance(e, int):
|
||
|
atomicnumber.append(e)
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
"The symbols argument must be a sequence of strings "
|
||
|
"or atomic numbers.")
|
||
|
self.atomicnumber = [atomicnumber[i] for i in self.element_basis]
|
||
|
assert len(self.atomicnumber) == len(self.bravais_basis)
|
||
|
|
||
|
def convert_to_natural_basis(self):
|
||
|
"Convert directions and miller indices to the natural basis."
|
||
|
self.directions = np.dot(self.directions, self.inverse_basis)
|
||
|
if self.bravais_basis is not None:
|
||
|
self.natural_bravais_basis = np.dot(self.bravais_basis,
|
||
|
self.inverse_basis)
|
||
|
for i in (0, 1, 2):
|
||
|
self.directions[i] = reduceindex(self.directions[i])
|
||
|
for i in (0, 1, 2):
|
||
|
(j, k) = self.other[i]
|
||
|
self.miller[i] = reduceindex(self.handedness *
|
||
|
cross(self.directions[j],
|
||
|
self.directions[k]))
|
||
|
|
||
|
def calc_num_atoms(self):
|
||
|
v = int(round(abs(np.linalg.det(self.directions))))
|
||
|
if self.bravais_basis is None:
|
||
|
return v
|
||
|
else:
|
||
|
return v * len(self.bravais_basis)
|
||
|
|
||
|
def make_unit_cell(self):
|
||
|
"Make the unit cell."
|
||
|
# Make three loops, and find the positions in the integral
|
||
|
# lattice. Each time a position is found, the atom is placed
|
||
|
# in the real unit cell by put_atom().
|
||
|
self.natoms = self.calc_num_atoms()
|
||
|
self.nput = 0
|
||
|
self.atoms = np.zeros((self.natoms, 3), float)
|
||
|
self.elements = np.zeros(self.natoms, int)
|
||
|
self.farpoint = sum(self.directions)
|
||
|
# printprogress = self.debug and (len(self.atoms) > 250)
|
||
|
# Find the radius of the sphere containing the whole system
|
||
|
sqrad = 0
|
||
|
for i in (0, 1):
|
||
|
for j in (0, 1):
|
||
|
for k in (0, 1):
|
||
|
vect = (i * self.directions[0] +
|
||
|
j * self.directions[1] +
|
||
|
k * self.directions[2])
|
||
|
if np.dot(vect, vect) > sqrad:
|
||
|
sqrad = np.dot(vect, vect)
|
||
|
del i, j, k
|
||
|
# Loop along first crystal axis (i)
|
||
|
for (istart, istep) in ((0, 1), (-1, -1)):
|
||
|
i = istart
|
||
|
icont = True
|
||
|
while icont:
|
||
|
nj = 0
|
||
|
for (jstart, jstep) in ((0, 1), (-1, -1)):
|
||
|
j = jstart
|
||
|
jcont = True
|
||
|
while jcont:
|
||
|
nk = 0
|
||
|
for (kstart, kstep) in ((0, 1), (-1, -1)):
|
||
|
k = kstart
|
||
|
kcont = True
|
||
|
while kcont:
|
||
|
# Now (i,j,k) loops over Z^3, except that
|
||
|
# the loops can be cut off when we get outside
|
||
|
# the unit cell.
|
||
|
point = np.array((i, j, k))
|
||
|
if self.inside(point):
|
||
|
self.put_atom(point)
|
||
|
nk += 1
|
||
|
nj += 1
|
||
|
# Is k too high?
|
||
|
if np.dot(point, point) > sqrad:
|
||
|
assert not self.inside(point)
|
||
|
kcont = False
|
||
|
k += kstep
|
||
|
# Is j too high?
|
||
|
if i * i + j * j > sqrad:
|
||
|
jcont = False
|
||
|
j += jstep
|
||
|
# Is i too high?
|
||
|
if i * i > sqrad:
|
||
|
icont = False
|
||
|
i += istep
|
||
|
# if printprogress:
|
||
|
# perce = int(100*self.nput / len(self.atoms))
|
||
|
# if perce > percent + 10:
|
||
|
# print ("%d%%" % perce),
|
||
|
# percent = perce
|
||
|
assert(self.nput == self.natoms)
|
||
|
|
||
|
def inside(self, point):
|
||
|
"Is a point inside the unit cell?"
|
||
|
return (np.dot(self.miller[0], point) >= 0 and
|
||
|
np.dot(self.miller[0], point - self.farpoint) < 0 and
|
||
|
np.dot(self.miller[1], point) >= 0 and
|
||
|
np.dot(self.miller[1], point - self.farpoint) < 0 and
|
||
|
np.dot(self.miller[2], point) >= 0 and
|
||
|
np.dot(self.miller[2], point - self.farpoint) < 0)
|
||
|
|
||
|
def put_atom(self, point):
|
||
|
"Place an atom given its integer coordinates."
|
||
|
if self.bravais_basis is None:
|
||
|
# No basis - just place a single atom
|
||
|
pos = np.dot(point, self.crystal_basis)
|
||
|
if self.debug >= 2:
|
||
|
print('Placing an atom at (%d,%d,%d) ~ (%.3f, %.3f, %.3f).' %
|
||
|
(tuple(point) + tuple(pos)))
|
||
|
self.atoms[self.nput] = pos
|
||
|
self.elements[self.nput] = self.atomicnumber
|
||
|
self.nput += 1
|
||
|
else:
|
||
|
for i, offset in enumerate(self.natural_bravais_basis):
|
||
|
pos = np.dot(point + offset, self.crystal_basis)
|
||
|
if self.debug >= 2:
|
||
|
print('Placing an atom at (%d+%f, %d+%f, %d+%f) ~ '
|
||
|
'(%.3f, %.3f, %.3f).' %
|
||
|
(point[0], offset[0], point[1], offset[1],
|
||
|
point[2], offset[2], pos[0], pos[1], pos[2]))
|
||
|
self.atoms[self.nput] = pos
|
||
|
if self.element_basis is None:
|
||
|
self.elements[self.nput] = self.atomicnumber
|
||
|
else:
|
||
|
self.elements[self.nput] = self.atomicnumber[i]
|
||
|
self.nput += 1
|
||
|
|
||
|
def find_directions(self, directions, miller):
|
||
|
"""
|
||
|
Find missing directions and miller indices from the specified ones.
|
||
|
"""
|
||
|
directions = np.asarray(directions).tolist()
|
||
|
miller = list(miller) # np.asarray(miller).tolist()
|
||
|
# If no directions etc are specified, use a sensible default.
|
||
|
if directions == [None, None, None] and miller == [None, None, None]:
|
||
|
directions = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
|
||
|
# Now fill in missing directions and miller indices. This is an
|
||
|
# iterative process.
|
||
|
change = 1
|
||
|
while change:
|
||
|
change = False
|
||
|
missing = 0
|
||
|
for i in (0, 1, 2):
|
||
|
j, k = self.other[i]
|
||
|
if directions[i] is None:
|
||
|
missing += 1
|
||
|
if miller[j] is not None and miller[k] is not None:
|
||
|
directions[i] = reduceindex(cross(miller[j],
|
||
|
miller[k]))
|
||
|
change = True
|
||
|
if self.debug >= 2:
|
||
|
print(
|
||
|
"Calculating directions[%d] from miller "
|
||
|
"indices" % i)
|
||
|
if miller[i] is None:
|
||
|
missing += 1
|
||
|
if directions[j] is not None and directions[k] is not None:
|
||
|
miller[i] = reduceindex(cross(directions[j],
|
||
|
directions[k]))
|
||
|
change = True
|
||
|
if self.debug >= 2:
|
||
|
print("Calculating miller[%d] from directions" % i)
|
||
|
if missing:
|
||
|
raise ValueError(
|
||
|
"Specification of directions and miller indices is incomplete.")
|
||
|
# Make sure that everything is Numeric arrays
|
||
|
self.directions = np.array(directions)
|
||
|
self.miller = np.array(miller)
|
||
|
# Check for zero-volume unit cell
|
||
|
if abs(np.linalg.det(self.directions)) < 1e-10:
|
||
|
raise ValueError(
|
||
|
"The direction vectors are linearly dependent "
|
||
|
"(unit cell volume would be zero)")
|
||
|
# Check for left-handed coordinate system
|
||
|
if np.linalg.det(self.directions) < 0:
|
||
|
print("WARNING: Creating a left-handed coordinate system!")
|
||
|
self.miller = -self.miller
|
||
|
self.handedness = -1
|
||
|
else:
|
||
|
self.handedness = 1
|
||
|
# Now check for consistency
|
||
|
for i in (0, 1, 2):
|
||
|
(j, k) = self.other[i]
|
||
|
m = reduceindex(self.handedness *
|
||
|
cross(self.directions[j], self.directions[k]))
|
||
|
if sum(np.not_equal(m, self.miller[i])):
|
||
|
print(
|
||
|
"ERROR: Miller index %s is inconsisten with "
|
||
|
"directions %d and %d" % (i, j, k))
|
||
|
print("Miller indices:")
|
||
|
print(str(self.miller))
|
||
|
print("Directions:")
|
||
|
print(str(self.directions))
|
||
|
raise ValueError(
|
||
|
"Inconsistent specification of miller indices and "
|
||
|
"directions.")
|
||
|
|
||
|
def print_directions_and_miller(self, txt=""):
|
||
|
"Print direction vectors and Miller indices."
|
||
|
print("Direction vectors of unit cell%s:" % (txt,))
|
||
|
for i in (0, 1, 2):
|
||
|
print(" ", self.directions[i])
|
||
|
print("Miller indices of surfaces%s:" % (txt,))
|
||
|
for i in (0, 1, 2):
|
||
|
print(" ", self.miller[i])
|
||
|
|
||
|
|
||
|
class MillerInfo:
|
||
|
"""Mixin class to provide information about Miller indices."""
|
||
|
|
||
|
def miller_to_direction(self, miller):
|
||
|
"""Returns the direction corresponding to a given Miller index."""
|
||
|
return np.dot(miller, self.millerbasis)
|
||
|
|
||
|
|
||
|
class Lattice(Atoms, MillerInfo):
|
||
|
"""List of atoms initially containing a regular lattice of atoms.
|
||
|
|
||
|
A part from the usual list of atoms methods this list of atoms type
|
||
|
also has a method, `miller_to_direction`, used to convert from Miller
|
||
|
indices to directions in the coordinate system of the lattice.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
|
||
|
# Helper functions
|
||
|
def cross(a, b):
|
||
|
"""The cross product of two vectors."""
|
||
|
return np.array((a[1] * b[2] - b[1] * a[2],
|
||
|
a[2] * b[0] - b[2] * a[0],
|
||
|
a[0] * b[1] - b[0] * a[1]))
|
||
|
|
||
|
|
||
|
def reduceindex(M):
|
||
|
"""Reduce Miller index to the lowest equivalent integers."""
|
||
|
oldM = M
|
||
|
g = math.gcd(M[0], M[1])
|
||
|
h = math.gcd(g, M[2])
|
||
|
while h != 1:
|
||
|
if h == 0:
|
||
|
raise ValueError(
|
||
|
"Division by zero: Are the miller indices linearly dependent?")
|
||
|
M = M // h
|
||
|
g = math.gcd(M[0], M[1])
|
||
|
h = math.gcd(g, M[2])
|
||
|
if np.dot(oldM, M) > 0:
|
||
|
return M
|
||
|
else:
|
||
|
return -M
|