A series of Python3 script to lower the barrier of computing and simulating molecular and material systems.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

85 lines
3.2 KiB

2 years ago
"""Function-like object creating triclinic lattices.
The following lattice creator is defined:
Triclinic
"""
from ase.lattice.bravais import Bravais
import numpy as np
from ase.data import reference_states as _refstate
class TriclinicFactory(Bravais):
"A factory for creating triclinic lattices."
# The name of the crystal structure in ChemicalElements
xtal_name = "triclinic"
# The natural basis vectors of the crystal structure
int_basis = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
basis_factor = 1.0
# Converts the natural basis back to the crystallographic basis
inverse_basis = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
inverse_basis_factor = 1.0
def get_lattice_constant(self):
"Get the lattice constant of an element with triclinic crystal structure."
if _refstate[self.atomicnumber]['symmetry'] != self.xtal_name:
raise ValueError(('Cannot guess the %s lattice constant of'
+ ' an element with crystal structure %s.')
% (self.xtal_name,
_refstate[self.atomicnumber]['symmetry']))
return _refstate[self.atomicnumber].copy()
def make_crystal_basis(self):
"Make the basis matrix for the crystal unit cell and the system unit cell."
lattice = self.latticeconstant
if isinstance(lattice, type({})):
a = lattice['a']
try:
b = lattice['b']
except KeyError:
b = a * lattice['b/a']
try:
c = lattice['c']
except KeyError:
c = a * lattice['c/a']
alpha = lattice['alpha']
beta = lattice['beta']
gamma = lattice['gamma']
else:
if len(lattice) == 6:
(a, b, c, alpha, beta, gamma) = lattice
else:
raise ValueError("Improper lattice constants for triclinic crystal.")
degree = np.pi / 180.0
cosa = np.cos(alpha*degree)
cosb = np.cos(beta*degree)
sinb = np.sin(beta*degree)
cosg = np.cos(gamma*degree)
sing = np.sin(gamma*degree)
lattice = np.array([[a, 0, 0],
[b*cosg, b*sing, 0],
[c*cosb, c*(cosa-cosb*cosg)/sing,
c*np.sqrt(sinb**2 - ((cosa-cosb*cosg)/sing)**2)]])
self.latticeconstant = lattice
self.miller_basis = lattice
self.crystal_basis = (self.basis_factor *
np.dot(self.int_basis, lattice))
self.basis = np.dot(self.directions, self.crystal_basis)
assert abs(np.dot(lattice[0], lattice[1]) - a*b*cosg) < 1e-5
assert abs(np.dot(lattice[0], lattice[2]) - a*c*cosb) < 1e-5
assert abs(np.dot(lattice[1], lattice[2]) - b*c*cosa) < 1e-5
assert abs(np.dot(lattice[0], lattice[0]) - a*a) < 1e-5
assert abs(np.dot(lattice[1], lattice[1]) - b*b) < 1e-5
assert abs(np.dot(lattice[2], lattice[2]) - c*c) < 1e-5
Triclinic = TriclinicFactory()