import numpy as np from ase.data.vdw import vdw_radii __all__ = ['vdw_radii', 'chemical_symbols', 'ground_state_magnetic_moments', 'reference_states', 'atomic_names', 'atomic_masses', 'atomic_numbers', 'covalent_radii'] chemical_symbols = [ # 0 'X', # 1 'H', 'He', # 2 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', # 3 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', # 4 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', # 5 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', # 6 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', # 7 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt', 'Ds', 'Rg', 'Cn', 'Nh', 'Fl', 'Mc', 'Lv', 'Ts', 'Og'] atomic_numbers = {} for Z, symbol in enumerate(chemical_symbols): atomic_numbers[symbol] = Z # IUPAC version dated 28 November 2016 atomic_names = [ '', 'Hydrogen', 'Helium', 'Lithium', 'Beryllium', 'Boron', 'Carbon', 'Nitrogen', 'Oxygen', 'Fluorine', 'Neon', 'Sodium', 'Magnesium', 'Aluminium', 'Silicon', 'Phosphorus', 'Sulfur', 'Chlorine', 'Argon', 'Potassium', 'Calcium', 'Scandium', 'Titanium', 'Vanadium', 'Chromium', 'Manganese', 'Iron', 'Cobalt', 'Nickel', 'Copper', 'Zinc', 'Gallium', 'Germanium', 'Arsenic', 'Selenium', 'Bromine', 'Krypton', 'Rubidium', 'Strontium', 'Yttrium', 'Zirconium', 'Niobium', 'Molybdenum', 'Technetium', 'Ruthenium', 'Rhodium', 'Palladium', 'Silver', 'Cadmium', 'Indium', 'Tin', 'Antimony', 'Tellurium', 'Iodine', 'Xenon', 'Caesium', 'Barium', 'Lanthanum', 'Cerium', 'Praseodymium', 'Neodymium', 'Promethium', 'Samarium', 'Europium', 'Gadolinium', 'Terbium', 'Dysprosium', 'Holmium', 'Erbium', 'Thulium', 'Ytterbium', 'Lutetium', 'Hafnium', 'Tantalum', 'Tungsten', 'Rhenium', 'Osmium', 'Iridium', 'Platinum', 'Gold', 'Mercury', 'Thallium', 'Lead', 'Bismuth', 'Polonium', 'Astatine', 'Radon', 'Francium', 'Radium', 'Actinium', 'Thorium', 'Protactinium', 'Uranium', 'Neptunium', 'Plutonium', 'Americium', 'Curium', 'Berkelium', 'Californium', 'Einsteinium', 'Fermium', 'Mendelevium', 'Nobelium', 'Lawrencium', 'Rutherfordium', 'Dubnium', 'Seaborgium', 'Bohrium', 'Hassium', 'Meitnerium', 'Darmastadtium', 'Roentgenium', 'Copernicium', 'Nihonium', 'Flerovium', 'Moscovium', 'Livermorium', 'Tennessine', 'Oganesson'] # Atomic masses are based on: # # Meija, J., Coplen, T., Berglund, M., et al. (2016). Atomic weights of # the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, # 88(3), pp. 265-291. Retrieved 30 Nov. 2016, # from doi:10.1515/pac-2015-0305 # # Standard atomic weights are taken from Table 1: "Standard atomic weights # 2013", with the uncertainties ignored. # For hydrogen, helium, boron, carbon, nitrogen, oxygen, magnesium, silicon, # sulfur, chlorine, bromine and thallium, where the weights are given as a # range the "conventional" weights are taken from Table 3 and the ranges are # given in the comments. # The mass of the most stable isotope (in Table 4) is used for elements # where there the element has no stable isotopes (to avoid NaNs): Tc, Pm, # Po, At, Rn, Fr, Ra, Ac, everything after Np atomic_masses_iupac2016 = np.array([ 1.0, # X 1.008, # H [1.00784, 1.00811] 4.002602, # He 6.94, # Li [6.938, 6.997] 9.0121831, # Be 10.81, # B [10.806, 10.821] 12.011, # C [12.0096, 12.0116] 14.007, # N [14.00643, 14.00728] 15.999, # O [15.99903, 15.99977] 18.998403163, # F 20.1797, # Ne 22.98976928, # Na 24.305, # Mg [24.304, 24.307] 26.9815385, # Al 28.085, # Si [28.084, 28.086] 30.973761998, # P 32.06, # S [32.059, 32.076] 35.45, # Cl [35.446, 35.457] 39.948, # Ar 39.0983, # K 40.078, # Ca 44.955908, # Sc 47.867, # Ti 50.9415, # V 51.9961, # Cr 54.938044, # Mn 55.845, # Fe 58.933194, # Co 58.6934, # Ni 63.546, # Cu 65.38, # Zn 69.723, # Ga 72.630, # Ge 74.921595, # As 78.971, # Se 79.904, # Br [79.901, 79.907] 83.798, # Kr 85.4678, # Rb 87.62, # Sr 88.90584, # Y 91.224, # Zr 92.90637, # Nb 95.95, # Mo 97.90721, # 98Tc 101.07, # Ru 102.90550, # Rh 106.42, # Pd 107.8682, # Ag 112.414, # Cd 114.818, # In 118.710, # Sn 121.760, # Sb 127.60, # Te 126.90447, # I 131.293, # Xe 132.90545196, # Cs 137.327, # Ba 138.90547, # La 140.116, # Ce 140.90766, # Pr 144.242, # Nd 144.91276, # 145Pm 150.36, # Sm 151.964, # Eu 157.25, # Gd 158.92535, # Tb 162.500, # Dy 164.93033, # Ho 167.259, # Er 168.93422, # Tm 173.054, # Yb 174.9668, # Lu 178.49, # Hf 180.94788, # Ta 183.84, # W 186.207, # Re 190.23, # Os 192.217, # Ir 195.084, # Pt 196.966569, # Au 200.592, # Hg 204.38, # Tl [204.382, 204.385] 207.2, # Pb 208.98040, # Bi 208.98243, # 209Po 209.98715, # 210At 222.01758, # 222Rn 223.01974, # 223Fr 226.02541, # 226Ra 227.02775, # 227Ac 232.0377, # Th 231.03588, # Pa 238.02891, # U 237.04817, # 237Np 244.06421, # 244Pu 243.06138, # 243Am 247.07035, # 247Cm 247.07031, # 247Bk 251.07959, # 251Cf 252.0830, # 252Es 257.09511, # 257Fm 258.09843, # 258Md 259.1010, # 259No 262.110, # 262Lr 267.122, # 267Rf 268.126, # 268Db 271.134, # 271Sg 270.133, # 270Bh 269.1338, # 269Hs 278.156, # 278Mt 281.165, # 281Ds 281.166, # 281Rg 285.177, # 285Cn 286.182, # 286Nh 289.190, # 289Fl 289.194, # 289Mc 293.204, # 293Lv 293.208, # 293Ts 294.214, # 294Og ]) # set atomic_masses to most recent version atomic_masses = atomic_masses_iupac2016 atomic_masses_legacy = np.array([ 1.00000, # X 1.00794, # H 4.00260, # He 6.94100, # Li 9.01218, # Be 10.81100, # B 12.01100, # C 14.00670, # N 15.99940, # O 18.99840, # F 20.17970, # Ne 22.98977, # Na 24.30500, # Mg 26.98154, # Al 28.08550, # Si 30.97376, # P 32.06600, # S 35.45270, # Cl 39.94800, # Ar 39.09830, # K 40.07800, # Ca 44.95590, # Sc 47.88000, # Ti 50.94150, # V 51.99600, # Cr 54.93800, # Mn 55.84700, # Fe 58.93320, # Co 58.69340, # Ni 63.54600, # Cu 65.39000, # Zn 69.72300, # Ga 72.61000, # Ge 74.92160, # As 78.96000, # Se 79.90400, # Br 83.80000, # Kr 85.46780, # Rb 87.62000, # Sr 88.90590, # Y 91.22400, # Zr 92.90640, # Nb 95.94000, # Mo np.nan, # Tc 101.07000, # Ru 102.90550, # Rh 106.42000, # Pd 107.86800, # Ag 112.41000, # Cd 114.82000, # In 118.71000, # Sn 121.75700, # Sb 127.60000, # Te 126.90450, # I 131.29000, # Xe 132.90540, # Cs 137.33000, # Ba 138.90550, # La 140.12000, # Ce 140.90770, # Pr 144.24000, # Nd np.nan, # Pm 150.36000, # Sm 151.96500, # Eu 157.25000, # Gd 158.92530, # Tb 162.50000, # Dy 164.93030, # Ho 167.26000, # Er 168.93420, # Tm 173.04000, # Yb 174.96700, # Lu 178.49000, # Hf 180.94790, # Ta 183.85000, # W 186.20700, # Re 190.20000, # Os 192.22000, # Ir 195.08000, # Pt 196.96650, # Au 200.59000, # Hg 204.38300, # Tl 207.20000, # Pb 208.98040, # Bi np.nan, # Po np.nan, # At np.nan, # Rn np.nan, # Fr 226.02540, # Ra np.nan, # Ac 232.03810, # Th 231.03590, # Pa 238.02900, # U 237.04820, # Np np.nan, # Pu np.nan, # Am np.nan, # Cm np.nan, # Bk np.nan, # Cf np.nan, # Es np.nan, # Fm np.nan, # Md np.nan, # No np.nan # Lw ]) atomic_masses_common = np.array([ 1.0, # X 1.00782503223, # H 4.00260325413, # He 7.0160034366, # Li 9.012183065, # Be 11.00930536, # B 12.0000000, # C 14.00307400443, # N 15.99491461957, # O 18.99840316273, # F 19.9924401762, # Ne 22.9897692820, # Na 23.985041697, # Mg 26.98153853, # Al 27.97692653465, # Si 30.97376199842, # P 31.9720711744, # S 34.968852682, # Cl 39.9623831237, # Ar 38.9637064864, # K 39.962590863, # Ca 44.95590828, # Sc 47.94794198, # Ti 50.94395704, # V 51.94050623, # Cr 54.93804391, # Mn 55.93493633, # Fe 58.93319429, # Co 57.93534241, # Ni 62.92959772, # Cu 63.92914201, # Zn 68.9255735, # Ga 73.921177761, # Ge 74.92159457, # As 79.9165218, # Se 78.9183376, # Br 83.9114977282, # Kr 84.9117897379, # Rb 87.9056125, # Sr 88.9058403, # Y 89.9046977, # Zr 92.9063730, # Nb 97.90540482, # Mo 96.9063667, # Tc 101.9043441, # Ru 102.9054980, # Rh 105.9034804, # Pd 106.9050916, # Ag 113.90336509, # Cd 114.903878776, # In 119.90220163, # Sn 120.9038120, # Sb 129.906222748, # Te 126.9044719, # I 131.9041550856, # Xe 132.9054519610, # Cs 137.90524700, # Ba 138.9063563, # La 139.9054431, # Ce 140.9076576, # Pr 141.9077290, # Nd 144.9127559, # Pm 151.9197397, # Sm 152.9212380, # Eu 157.9241123, # Gd 158.9253547, # Tb 163.9291819, # Dy 164.9303288, # Ho 165.9302995, # Er 168.9342179, # Tm 173.9388664, # Yb 174.9407752, # Lu 179.9465570, # Hf 180.9479958, # Ta 183.95093092, # W 186.9557501, # Re 191.9614770, # Os 192.9629216, # Ir 194.9647917, # Pt 196.96656879, # Au 201.97064340, # Hg 204.9744278, # Tl 207.9766525, # Pb 208.9803991, # Bi 208.9824308, # Po 209.9871479, # At 222.0175782, # Rn 223.0197360, # Fr 226.0254103, # Ra 227.0277523, # Ac 232.0380558, # Th 231.0358842, # Pa 238.0507884, # U 237.0481736, # Np 244.0642053, # Pu 243.0613813, # Am 247.0703541, # Cm 247.0703073, # Bk 251.0795886, # Cf 252.082980, # Es 257.0951061, # Fm 258.0984315, # Md 259.10103, # No 262.10961, # Lr 267.12179, # Rf 268.12567, # Db 271.13393, # Sg 272.13826, # Bh 270.13429, # Hs 276.15159, # Mt 281.16451, # Ds 280.16514, # Rg 285.17712, # Cn 284.17873, # Nh 289.19042, # Fl 288.19274, # Mc 293.20449, # Lv 292.20746, # Ts 294.21392, # Og ]) # Covalent radii from: # # Covalent radii revisited, # Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, # Jorge Echeverría, Eduard Cremades, Flavia Barragán and Santiago Alvarez, # Dalton Trans., 2008, 2832-2838 DOI:10.1039/B801115J missing = 0.2 covalent_radii = np.array([ missing, # X 0.31, # H 0.28, # He 1.28, # Li 0.96, # Be 0.84, # B 0.76, # C 0.71, # N 0.66, # O 0.57, # F 0.58, # Ne 1.66, # Na 1.41, # Mg 1.21, # Al 1.11, # Si 1.07, # P 1.05, # S 1.02, # Cl 1.06, # Ar 2.03, # K 1.76, # Ca 1.70, # Sc 1.60, # Ti 1.53, # V 1.39, # Cr 1.39, # Mn 1.32, # Fe 1.26, # Co 1.24, # Ni 1.32, # Cu 1.22, # Zn 1.22, # Ga 1.20, # Ge 1.19, # As 1.20, # Se 1.20, # Br 1.16, # Kr 2.20, # Rb 1.95, # Sr 1.90, # Y 1.75, # Zr 1.64, # Nb 1.54, # Mo 1.47, # Tc 1.46, # Ru 1.42, # Rh 1.39, # Pd 1.45, # Ag 1.44, # Cd 1.42, # In 1.39, # Sn 1.39, # Sb 1.38, # Te 1.39, # I 1.40, # Xe 2.44, # Cs 2.15, # Ba 2.07, # La 2.04, # Ce 2.03, # Pr 2.01, # Nd 1.99, # Pm 1.98, # Sm 1.98, # Eu 1.96, # Gd 1.94, # Tb 1.92, # Dy 1.92, # Ho 1.89, # Er 1.90, # Tm 1.87, # Yb 1.87, # Lu 1.75, # Hf 1.70, # Ta 1.62, # W 1.51, # Re 1.44, # Os 1.41, # Ir 1.36, # Pt 1.36, # Au 1.32, # Hg 1.45, # Tl 1.46, # Pb 1.48, # Bi 1.40, # Po 1.50, # At 1.50, # Rn 2.60, # Fr 2.21, # Ra 2.15, # Ac 2.06, # Th 2.00, # Pa 1.96, # U 1.90, # Np 1.87, # Pu 1.80, # Am 1.69, # Cm missing, # Bk missing, # Cf missing, # Es missing, # Fm missing, # Md missing, # No missing, # Lr missing, # Rf missing, # Db missing, # Sg missing, # Bh missing, # Hs missing, # Mt missing, # Ds missing, # Rg missing, # Cn missing, # Nh missing, # Fl missing, # Mc missing, # Lv missing, # Ts missing, # Og ]) # This data is from Ashcroft and Mermin. # Most constants are listed in periodic table, inside front cover. # Reference states that have a non-trivial basis have a 'basis' key. # If the basis is None, it means it has a basis but we have not tabulated it. # For basis of RHL systems (represented here as basis_x) see page 127. # For TET systems see page 127, too. reference_states = [ None, # X {'symmetry': 'diatom', 'd': 0.74}, # H {'symmetry': 'atom'}, # He {'symmetry': 'bcc', 'a': 3.49}, # Li {'symmetry': 'hcp', 'c/a': 1.567, 'a': 2.29}, # Be {'symmetry': 'tetragonal', 'c/a': 0.576, 'a': 8.73, # B 'basis': None}, {'symmetry': 'diamond', 'a': 3.57}, # C {'symmetry': 'diatom', 'd': 1.10}, # N {'symmetry': 'diatom', 'd': 1.21}, # O {'symmetry': 'diatom', 'd': 1.42}, # F {'symmetry': 'fcc', 'a': 4.43}, # Ne {'symmetry': 'bcc', 'a': 4.23}, # Na {'symmetry': 'hcp', 'c/a': 1.624, 'a': 3.21}, # Mg {'symmetry': 'fcc', 'a': 4.05}, # Al {'symmetry': 'diamond', 'a': 5.43}, # Si {'symmetry': 'cubic', 'a': 7.17, # P 'basis': None}, {'symmetry': 'orthorhombic', 'c/a': 2.339, 'a': 10.47, 'b/a': 1.229, # S 'basis': None}, {'symmetry': 'orthorhombic', 'c/a': 1.324, 'a': 6.24, 'b/a': 0.718, # Cl 'basis': None}, {'symmetry': 'fcc', 'a': 5.26}, # Ar {'symmetry': 'bcc', 'a': 5.23}, # K {'symmetry': 'fcc', 'a': 5.58}, # Ca {'symmetry': 'hcp', 'c/a': 1.594, 'a': 3.31}, # Sc {'symmetry': 'hcp', 'c/a': 1.588, 'a': 2.95}, # Ti {'symmetry': 'bcc', 'a': 3.02}, # V {'symmetry': 'bcc', 'a': 2.88}, # Cr {'symmetry': 'cubic', 'a': 8.89, # Mn 'basis': None}, {'symmetry': 'bcc', 'a': 2.87}, # Fe {'symmetry': 'hcp', 'c/a': 1.622, 'a': 2.51}, # Co {'symmetry': 'fcc', 'a': 3.52}, # Ni {'symmetry': 'fcc', 'a': 3.61}, # Cu {'symmetry': 'hcp', 'c/a': 1.856, 'a': 2.66}, # Zn {'symmetry': 'orthorhombic', 'c/a': 1.695, 'a': 4.51, 'b/a': 1.001, # Ga 'basis': None}, {'symmetry': 'diamond', 'a': 5.66}, # Ge {'symmetry': 'rhombohedral', 'a': 4.13, 'alpha': 54.10, # As 'basis_x': np.array(0.226) * (-1, 1)}, {'symmetry': 'hcp', 'c/a': 1.136, 'a': 4.36, # Se 'basis': None}, # Needs 3-atom basis {'symmetry': 'orthorhombic', 'c/a': 1.307, 'a': 6.67, 'b/a': 0.672, # Br 'basis': None}, {'symmetry': 'fcc', 'a': 5.72}, # Kr {'symmetry': 'bcc', 'a': 5.59}, # Rb {'symmetry': 'fcc', 'a': 6.08}, # Sr {'symmetry': 'hcp', 'c/a': 1.571, 'a': 3.65}, # Y {'symmetry': 'hcp', 'c/a': 1.593, 'a': 3.23}, # Zr {'symmetry': 'bcc', 'a': 3.30}, # Nb {'symmetry': 'bcc', 'a': 3.15}, # Mo {'symmetry': 'hcp', 'c/a': 1.604, 'a': 2.74}, # Tc {'symmetry': 'hcp', 'c/a': 1.584, 'a': 2.70}, # Ru {'symmetry': 'fcc', 'a': 3.80}, # Rh {'symmetry': 'fcc', 'a': 3.89}, # Pd {'symmetry': 'fcc', 'a': 4.09}, # Ag {'symmetry': 'hcp', 'c/a': 1.886, 'a': 2.98}, # Cd # For In, A&M give a face-centered cell; we need some sqrt2 conversions. {'symmetry': 'bct', 'c/a': 1.076 * 2**.5, 'a': 4.59 / 2**.5}, # In {'symmetry': 'bct', 'c/a': 0.546, 'a': 5.82, # Sn 'basis': [[0.0, 0.0, 0.0], [0.25, 0.75, 0.5]]}, {'symmetry': 'rhombohedral', 'a': 4.51, 'alpha': 57.60, # Sb 'basis_x': np.array(0.233) * (-1, 1)}, {'symmetry': 'hcp', 'c/a': 1.330, 'a': 4.45, # Te 'basis': None}, # Te needs a 3-atom basis. {'symmetry': 'orthorhombic', 'c/a': 1.347, 'a': 7.27, 'b/a': 0.659, # I 'basis': None}, {'symmetry': 'fcc', 'a': 6.20}, # Xe {'symmetry': 'bcc', 'a': 6.05}, # Cs {'symmetry': 'bcc', 'a': 5.02}, # Ba {'symmetry': 'hcp', 'c/a': 1.619, 'a': 3.75}, # La {'symmetry': 'fcc', 'a': 5.16}, # Ce {'symmetry': 'hcp', 'c/a': 1.614, 'a': 3.67}, # Pr {'symmetry': 'hcp', 'c/a': 1.614, 'a': 3.66}, # Nd None, # Pm {'symmetry': 'rhombohedral', 'a': 9.00, 'alpha': 23.13, 'basis_x': np.array(0.222) * (0, -1, 1)}, # Sm {'symmetry': 'bcc', 'a': 4.61}, # Eu {'symmetry': 'hcp', 'c/a': 1.588, 'a': 3.64}, # Gd {'symmetry': 'hcp', 'c/a': 1.581, 'a': 3.60}, # Th {'symmetry': 'hcp', 'c/a': 1.573, 'a': 3.59}, # Dy {'symmetry': 'hcp', 'c/a': 1.570, 'a': 3.58}, # Ho {'symmetry': 'hcp', 'c/a': 1.570, 'a': 3.56}, # Er {'symmetry': 'hcp', 'c/a': 1.570, 'a': 3.54}, # Tm {'symmetry': 'fcc', 'a': 5.49}, # Yb {'symmetry': 'hcp', 'c/a': 1.585, 'a': 3.51}, # Lu {'symmetry': 'hcp', 'c/a': 1.582, 'a': 3.20}, # Hf {'symmetry': 'bcc', 'a': 3.31}, # Ta {'symmetry': 'bcc', 'a': 3.16}, # W {'symmetry': 'hcp', 'c/a': 1.615, 'a': 2.76}, # Re {'symmetry': 'hcp', 'c/a': 1.579, 'a': 2.74}, # Os {'symmetry': 'fcc', 'a': 3.84}, # Ir {'symmetry': 'fcc', 'a': 3.92}, # Pt {'symmetry': 'fcc', 'a': 4.08}, # Au {'symmetry': 'rhombohedral', 'a': 2.99, 'alpha': 70.45, # Hg 'basis_x': np.zeros(1)}, {'symmetry': 'hcp', 'c/a': 1.599, 'a': 3.46}, # Tl {'symmetry': 'fcc', 'a': 4.95}, # Pb {'symmetry': 'rhombohedral', 'a': 4.75, 'alpha': 57.14, 'basis_x': np.array(0.237) * (-1, 1)}, # Bi {'symmetry': 'sc', 'a': 3.35}, # Po None, # At None, # Rn None, # Fr None, # Ra {'symmetry': 'fcc', 'a': 5.31}, # Ac {'symmetry': 'fcc', 'a': 5.08}, # Th {'symmetry': 'tetragonal', 'c/a': 0.825, 'a': 3.92}, # Pa {'symmetry': 'orthorhombic', 'c/a': 2.056, 'a': 2.85, 'b/a': 1.736}, # U {'symmetry': 'orthorhombic', 'c/a': 1.411, 'a': 4.72, 'b/a': 1.035}, # Np {'symmetry': 'monoclinic'}, # Pu None, # Am None, # Cm None, # Bk None, # Cf None, # Es None, # Fm None, # Md None, # No None, # Lr None, # Rf None, # Db None, # Sg None, # Bh None, # Hs None, # Mt None, # Ds None, # Rg None, # Cn None, # Nh None, # Fl None, # Mc None, # Lv None, # Ts None, # Og ] # http://www.webelements.com ground_state_magnetic_moments = np.array([ 0.0, # X 1.0, # H 0.0, # He 1.0, # Li 0.0, # Be 1.0, # B 2.0, # C 3.0, # N 2.0, # O 1.0, # F 0.0, # Ne 1.0, # Na 0.0, # Mg 1.0, # Al 2.0, # Si 3.0, # P 2.0, # S 1.0, # Cl 0.0, # Ar 1.0, # K 0.0, # Ca 1.0, # Sc 2.0, # Ti 3.0, # V 6.0, # Cr 5.0, # Mn 4.0, # Fe 3.0, # Co 2.0, # Ni 1.0, # Cu 0.0, # Zn 1.0, # Ga 2.0, # Ge 3.0, # As 2.0, # Se 1.0, # Br 0.0, # Kr 1.0, # Rb 0.0, # Sr 1.0, # Y 2.0, # Zr 5.0, # Nb 6.0, # Mo 5.0, # Tc 4.0, # Ru 3.0, # Rh 0.0, # Pd 1.0, # Ag 0.0, # Cd 1.0, # In 2.0, # Sn 3.0, # Sb 2.0, # Te 1.0, # I 0.0, # Xe 1.0, # Cs 0.0, # Ba 1.0, # La 1.0, # Ce 3.0, # Pr 4.0, # Nd 5.0, # Pm 6.0, # Sm 7.0, # Eu 8.0, # Gd 5.0, # Tb 4.0, # Dy 3.0, # Ho 2.0, # Er 1.0, # Tm 0.0, # Yb 1.0, # Lu 2.0, # Hf 3.0, # Ta 4.0, # W 5.0, # Re 4.0, # Os 3.0, # Ir 2.0, # Pt 1.0, # Au 0.0, # Hg 1.0, # Tl 2.0, # Pb 3.0, # Bi 2.0, # Po 1.0, # At 0.0, # Rn 1.0, # Fr 0.0, # Ra 1.0, # Ac 2.0, # Th 3.0, # Pa 4.0, # U 5.0, # Np 6.0, # Pu 7.0, # Am 8.0, # Cm 5.0, # Bk 4.0, # Cf 4.0, # Es 2.0, # Fm 1.0, # Md 0.0, # No np.nan]) # Lr