***************** * O R C A * ***************** #, ### #### ##### ###### ########, ,,################,,,,, ,,#################################,, ,,##########################################,, ,#########################################, ''#####, ,#############################################,, '####, ,##################################################,,,,####, ,###########'''' ''''############################### ,#####'' ,,,,##########,,,, '''####''' '#### ,##' ,,,,###########################,,, '## ' ,,###'''' '''############,,, ,,##'' '''############,,,, ,,,,,,###'' ,#'' '''#######################''' ' ''''####'''' ,#######, #######, ,#######, ## ,#' '#, ## ## ,#' '#, #''# ###### ,####, ## ## ## ,#' ## #' '# # #' '# ## ## ####### ## ,######, #####, # # '#, ,#' ## ## '#, ,#' ,# #, ## #, ,# '#######' ## ## '#######' #' '# #####' # '####' ####################################################### # -***- # # Department of theory and spectroscopy # # Directorship and core code : Frank Neese # # Max Planck Institute fuer Kohlenforschung # # Kaiser Wilhelm Platz 1 # # D-45470 Muelheim/Ruhr # # Germany # # # # All rights reserved # # -***- # ####################################################### Program Version 5.0.2 - RELEASE - With contributions from (in alphabetic order): Daniel Aravena : Magnetic Suceptibility Michael Atanasov : Ab Initio Ligand Field Theory (pilot matlab implementation) Alexander A. Auer : GIAO ZORA, VPT2 properties, NMR spectrum Ute Becker : Parallelization Giovanni Bistoni : ED, misc. LED, open-shell LED, HFLD Martin Brehm : Molecular dynamics Dmytro Bykov : SCF Hessian Vijay G. Chilkuri : MRCI spin determinant printing, contributions to CSF-ICE Dipayan Datta : RHF DLPNO-CCSD density Achintya Kumar Dutta : EOM-CC, STEOM-CC Dmitry Ganyushin : Spin-Orbit,Spin-Spin,Magnetic field MRCI Miquel Garcia : C-PCM and meta-GGA Hessian, CC/C-PCM, Gaussian charge scheme Yang Guo : DLPNO-NEVPT2, F12-NEVPT2, CIM, IAO-localization Andreas Hansen : Spin unrestricted coupled pair/coupled cluster methods Benjamin Helmich-Paris : MC-RPA, TRAH-SCF, COSX integrals Lee Huntington : MR-EOM, pCC Robert Izsak : Overlap fitted RIJCOSX, COSX-SCS-MP3, EOM Marcus Kettner : VPT2 Christian Kollmar : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density, CASPT2, CASPT2-K Simone Kossmann : Meta GGA functionals, TD-DFT gradient, OOMP2, MP2 Hessian Martin Krupicka : Initial AUTO-CI Lucas Lang : DCDCAS Marvin Lechner : AUTO-CI (C++ implementation), FIC-MRCC Dagmar Lenk : GEPOL surface, SMD Dimitrios Liakos : Extrapolation schemes; Compound Job, initial MDCI parallelization Dimitrios Manganas : Further ROCIS development; embedding schemes Dimitrios Pantazis : SARC Basis sets Anastasios Papadopoulos: AUTO-CI, single reference methods and gradients Taras Petrenko : DFT Hessian,TD-DFT gradient, ASA, ECA, R-Raman, ABS, FL, XAS/XES, NRVS Peter Pinski : DLPNO-MP2, DLPNO-MP2 Gradient Christoph Reimann : Effective Core Potentials Marius Retegan : Local ZFS, SOC Christoph Riplinger : Optimizer, TS searches, QM/MM, DLPNO-CCSD(T), (RO)-DLPNO pert. Triples Tobias Risthaus : Range-separated hybrids, TD-DFT gradient, RPA, STAB Michael Roemelt : Original ROCIS implementation Masaaki Saitow : Open-shell DLPNO-CCSD energy and density Barbara Sandhoefer : DKH picture change effects Avijit Sen : IP-ROCIS Kantharuban Sivalingam : CASSCF convergence, NEVPT2, FIC-MRCI Bernardo de Souza : ESD, SOC TD-DFT Georgi Stoychev : AutoAux, RI-MP2 NMR, DLPNO-MP2 response Willem Van den Heuvel : Paramagnetic NMR Boris Wezisla : Elementary symmetry handling Frank Wennmohs : Technical directorship We gratefully acknowledge several colleagues who have allowed us to interface, adapt or use parts of their codes: Stefan Grimme, W. Hujo, H. Kruse, P. Pracht, : VdW corrections, initial TS optimization, C. Bannwarth, S. Ehlert DFT functionals, gCP, sTDA/sTD-DF Ed Valeev, F. Pavosevic, A. Kumar : LibInt (2-el integral package), F12 methods Garnet Chan, S. Sharma, J. Yang, R. Olivares : DMRG Ulf Ekstrom : XCFun DFT Library Mihaly Kallay : mrcc (arbitrary order and MRCC methods) Jiri Pittner, Ondrej Demel : Mk-CCSD Frank Weinhold : gennbo (NPA and NBO analysis) Christopher J. Cramer and Donald G. Truhlar : smd solvation model Lars Goerigk : TD-DFT with DH, B97 family of functionals V. Asgeirsson, H. Jonsson : NEB implementation FAccTs GmbH : IRC, NEB, NEB-TS, DLPNO-Multilevel, CI-OPT MM, QMMM, 2- and 3-layer-ONIOM, Crystal-QMMM, LR-CPCM, SF, NACMEs, symmetry and pop. for TD-DFT, nearIR, NL-DFT gradient (VV10), updates on ESD, ML-optimized integration grids S Lehtola, MJT Oliveira, MAL Marques : LibXC Library Liviu Ungur et al : ANISO software Your calculation uses the libint2 library for the computation of 2-el integrals For citations please refer to: http://libint.valeyev.net Your ORCA version has been built with support for libXC version: 5.1.0 For citations please refer to: https://tddft.org/programs/libxc/ This ORCA versions uses: CBLAS interface : Fast vector & matrix operations LAPACKE interface : Fast linear algebra routines SCALAPACK package : Parallel linear algebra routines Shared memory : Shared parallel matrices BLAS/LAPACK : OpenBLAS 0.3.15 USE64BITINT DYNAMIC_ARCH NO_AFFINITY SkylakeX SINGLE_THREADED Core in use : SkylakeX Copyright (c) 2011-2014, The OpenBLAS Project *************************************** The coordinates will be read from file: cmmd.xyz *************************************** Your calculation utilizes the semiempirical GFN2-xTB method Please cite in your paper: C. Bannwarth, Ehlert S., S. Grimme, J. Chem. Theory Comput., 15, (2019), 1652. ================================================================================ ================================================================================ WARNINGS Please study these warnings very carefully! ================================================================================ WARNING: Old DensityContainer found on disk! Will remove this file - If you want to keep old densities, please start your calculation with a different basename. WARNING: Gradients needed for Numerical Frequencies ===> : Setting RunTyp to EnGrad WARNING: Found dipole moment calculation with XTB calculation ===> : Switching off dipole moment calculation WARNING: TRAH-SCF for XTB is not implemented! ===> : Turning TRAH off! ================================================================================ INPUT FILE ================================================================================ NAME = cmmd.in | 1> #CMMDE generated Orca input file | 2> !XTB2 Numfreq | 3> %pal | 4> nprocs 1 | 5> end | 6> | 7> *xyzfile 0 1 cmmd.xyz | 8> | 9> %freq | 10> scalfreq 1 | 11> Temp 298.15 | 12> Pressure 1.0 | 13> end | 14> | 15> ****END OF INPUT**** ================================================================================ ******************************* * Energy+Gradient Calculation * ******************************* ----------------------------------------------------------- | ===================== | | x T B | | ===================== | | S. Grimme | | Mulliken Center for Theoretical Chemistry | | University of Bonn | | Aditya W. Sakti | | Departemen Kimia | | Universitas Pertamina | ----------------------------------------------------------- * xtb version 6.4.1 (060166e8e329d5f5f0e407f406ce482635821d54) compiled by '@Linux' on 12/03/2021 xtb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. xtb is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. Cite this work as: * C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, WIREs Comput. Mol. Sci., 2020, 11, e01493. DOI: 10.1002/wcms.1493 for GFN2-xTB: * C. Bannwarth, S. Ehlert and S. Grimme., J. Chem. Theory Comput., 2019, 15, 1652-1671. DOI: 10.1021/acs.jctc.8b01176 for GFN1-xTB: * S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989-2009. DOI: 10.1021/acs.jctc.7b00118 for GFN0-xTB: * P. Pracht, E. Caldeweyher, S. Ehlert, S. Grimme, ChemRxiv, 2019, preprint. DOI: 10.26434/chemrxiv.8326202.v1 for GFN-FF: * S. Spicher and S. Grimme, Angew. Chem. Int. Ed., 2020, 59, 15665-15673. DOI: 10.1002/anie.202004239 for ALPB and GBSA implicit solvation: * S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput., 2021, 17, 4250-4261. DOI: 10.1021/acs.jctc.1c00471 for DFT-D4: * E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215 * E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. DOI: 10.1063/1.5090222 * E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A for sTDA-xTB: * S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103. DOI: 10.1063/1.4959605 in the mass-spec context: * V. Asgeirsson, C. Bauer and S. Grimme, Chem. Sci., 2017, 8, 4879. DOI: 10.1039/c7sc00601b * J. Koopman and S. Grimme, ACS Omega 2019, 4, 12, 15120-15133. DOI: 10.1021/acsomega.9b02011 for metadynamics refer to: * S. Grimme, J. Chem. Theory Comput., 2019, 155, 2847-2862 DOI: 10.1021/acs.jctc.9b00143 for SPH calculations refer to: * S. Spicher and S. Grimme, J. Chem. Theory Comput., 2021, 17, 1701-1714 DOI: 10.1021/acs.jctc.0c01306 with help from (in alphabetical order) P. Atkinson, C. Bannwarth, F. Bohle, G. Brandenburg, E. Caldeweyher M. Checinski, S. Dohm, S. Ehlert, S. Ehrlich, I. Gerasimov, J. Koopman C. Lavigne, S. Lehtola, F. März, M. Müller, F. Musil, H. Neugebauer J. Pisarek, C. Plett, P. Pracht, J. Seibert, P. Shushkov, S. Spicher M. Stahn, M. Steiner, T. Strunk, J. Stückrath, T. Rose, and J. Unsleber * started run on 2022/04/28 at 11:27:15.724 ------------------------------------------------- | Calculation Setup | ------------------------------------------------- program call : /home/adit/opt/orca/otool_xtb cmmd_XTB.xyz --grad -c 0 -u 0 -P 1 --namespace cmmd --input cmmd_XTB.input.tmp --acc 1.000000 hostname : compute calculation namespace : cmmd coordinate file : cmmd_XTB.xyz number of atoms : 5 number of electrons : 8 charge : 0 spin : 0.0 first test random number : 0.45806096902679 ID Z sym. atoms 1 6 C 1 2 1 H 2-5 ------------------------------------------------- | G F N 2 - x T B | ------------------------------------------------- Reference 10.1021/acs.jctc.8b01176 * Hamiltonian: H0-scaling (s, p, d) 1.850000 2.230000 2.230000 zeta-weighting 0.500000 * Dispersion: s8 2.700000 a1 0.520000 a2 5.000000 s9 5.000000 * Repulsion: kExp 1.500000 1.000000 rExp 1.000000 * Coulomb: alpha 2.000000 third order shell-resolved anisotropic true a3 3.000000 a5 4.000000 cn-shift 1.200000 cn-exp 4.000000 max-rad 5.000000 ................................................... : SETUP : :.................................................: : # basis functions 8 : : # atomic orbitals 8 : : # shells 6 : : # electrons 8 : : max. iterations 250 : : Hamiltonian GFN2-xTB : : restarted? false : : GBSA solvation false : : PC potential false : : electronic temp. 300.0000000 K : : accuracy 1.0000000 : : -> integral cutoff 0.2500000E+02 : : -> integral neglect 0.1000000E-07 : : -> SCF convergence 0.1000000E-05 Eh : : -> wf. convergence 0.1000000E-03 e : : Broyden damping 0.4000000 : ................................................... iter E dE RMSdq gap omega full diag 1 -4.2239587 -0.422396E+01 0.248E+00 16.90 0.0 T 2 -4.2374347 -0.134760E-01 0.912E-01 16.71 1.0 T 3 -4.2375727 -0.137987E-03 0.506E-01 16.61 1.0 T 4 -4.2376226 -0.499077E-04 0.100E-01 16.49 1.0 T 5 -4.2376226 0.183268E-07 0.539E-03 16.49 8.3 T 6 -4.2376227 -0.794093E-07 0.166E-04 16.49 269.4 T 7 -4.2376227 -0.834559E-10 0.196E-06 16.49 22792.6 T *** convergence criteria satisfied after 7 iterations *** # Occupation Energy/Eh Energy/eV ------------------------------------------------------------- 1 2.0000 -0.5788386 -15.7510 2 2.0000 -0.4661696 -12.6851 3 2.0000 -0.4661655 -12.6850 4 2.0000 -0.4661594 -12.6848 (HOMO) 5 0.1398593 3.8058 (LUMO) 6 0.2020304 5.4975 7 0.2020678 5.4985 8 0.2021139 5.4998 ------------------------------------------------------------- HL-Gap 0.6060187 Eh 16.4906 eV Fermi-level -0.1631500 Eh -4.4395 eV SCC (total) 0 d, 0 h, 0 min, 0.023 sec SCC setup ... 0 min, 0.000 sec ( 1.260%) Dispersion ... 0 min, 0.000 sec ( 0.106%) classical contributions ... 0 min, 0.000 sec ( 0.058%) integral evaluation ... 0 min, 0.001 sec ( 2.896%) iterations ... 0 min, 0.021 sec ( 94.189%) molecular gradient ... 0 min, 0.000 sec ( 0.973%) printout ... 0 min, 0.000 sec ( 0.466%) ::::::::::::::::::::::::::::::::::::::::::::::::::::: :: SUMMARY :: ::::::::::::::::::::::::::::::::::::::::::::::::::::: :: total energy -4.174453278189 Eh :: :: gradient norm 0.022735966218 Eh/a0 :: :: HOMO-LUMO gap 16.490609280094 eV :: ::.................................................:: :: SCC energy -4.237622656391 Eh :: :: -> isotropic ES 0.001892323517 Eh :: :: -> anisotropic ES 0.002670073781 Eh :: :: -> anisotropic XC 0.004009252448 Eh :: :: -> dispersion -0.000663926968 Eh :: :: repulsion energy 0.063169371945 Eh :: :: add. restraining 0.000000000000 Eh :: :: total charge 0.000000000000 e :: ::::::::::::::::::::::::::::::::::::::::::::::::::::: Property printout bound to 'properties.out' ------------------------------------------------- | TOTAL ENERGY -4.174453278189 Eh | | GRADIENT NORM 0.022735966218 Eh/α | | HOMO-LUMO GAP 16.490609280094 eV | ------------------------------------------------- ------------------------------------------------------------------------ * finished run on 2022/04/28 at 11:27:15.762 ------------------------------------------------------------------------ total: * wall-time: 0 d, 0 h, 0 min, 0.038 sec * cpu-time: 0 d, 0 h, 0 min, 0.009 sec * ratio c/w: 0.247 speedup SCF: * wall-time: 0 d, 0 h, 0 min, 0.023 sec * cpu-time: 0 d, 0 h, 0 min, 0.002 sec * ratio c/w: 0.094 speedup ------------------------- -------------------- FINAL SINGLE POINT ENERGY -4.174453278190 ------------------------- -------------------- ---------------------------------------------------------------------------- ORCA NUMERICAL FREQUENCIES ---------------------------------------------------------------------------- Number of atoms ... 5 Central differences ... used Number of displacements ... 30 Numerical increment ... 5.000e-03 bohr IR-spectrum generation ... on Raman-spectrum generation ... off Surface Crossing Hessian ... off The output will be reduced. Please look at the following files: SCF program output ... >cmmd.lastscf Integral program output ... >cmmd.lastint Gradient program output ... >cmmd.lastgrad Dipole moment program output ... >cmmd.lastmom AutoCI program output ... >cmmd.lastautoci << Calculating on displaced geometry 1 (of 30) >> << Calculating on displaced geometry 2 (of 30) >> << Calculating on displaced geometry 3 (of 30) >> << Calculating on displaced geometry 4 (of 30) >> << Calculating on displaced geometry 5 (of 30) >> << Calculating on displaced geometry 6 (of 30) >> << Calculating on displaced geometry 7 (of 30) >> << Calculating on displaced geometry 8 (of 30) >> << Calculating on displaced geometry 9 (of 30) >> << Calculating on displaced geometry 10 (of 30) >> << Calculating on displaced geometry 11 (of 30) >> << Calculating on displaced geometry 12 (of 30) >> << Calculating on displaced geometry 13 (of 30) >> << Calculating on displaced geometry 14 (of 30) >> << Calculating on displaced geometry 15 (of 30) >> << Calculating on displaced geometry 16 (of 30) >> << Calculating on displaced geometry 17 (of 30) >> << Calculating on displaced geometry 18 (of 30) >> << Calculating on displaced geometry 19 (of 30) >> << Calculating on displaced geometry 20 (of 30) >> << Calculating on displaced geometry 21 (of 30) >> << Calculating on displaced geometry 22 (of 30) >> << Calculating on displaced geometry 23 (of 30) >> << Calculating on displaced geometry 24 (of 30) >> << Calculating on displaced geometry 25 (of 30) >> << Calculating on displaced geometry 26 (of 30) >> << Calculating on displaced geometry 27 (of 30) >> << Calculating on displaced geometry 28 (of 30) >> << Calculating on displaced geometry 29 (of 30) >> << Calculating on displaced geometry 30 (of 30) >> ----------------------- VIBRATIONAL FREQUENCIES ----------------------- Scaling factor for frequencies = 1.000000000 (already applied!) 0: 0.00 cm**-1 1: 0.00 cm**-1 2: 0.00 cm**-1 3: 0.00 cm**-1 4: 0.00 cm**-1 5: 0.00 cm**-1 6: 1411.89 cm**-1 7: 1411.94 cm**-1 8: 1411.99 cm**-1 9: 1567.72 cm**-1 10: 1567.76 cm**-1 11: 2918.15 cm**-1 12: 2930.72 cm**-1 13: 2930.81 cm**-1 14: 2931.00 cm**-1 ------------ NORMAL MODES ------------ These modes are the cartesian displacements weighted by the diagonal matrix M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom Thus, these vectors are normalized but *not* orthogonal 0 1 2 3 4 5 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 13 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6 7 8 9 10 11 0 0.096478 0.069838 0.050248 0.000010 0.000019 -0.000055 1 -0.065244 0.108600 -0.025674 -0.000011 0.000021 0.000069 2 -0.056089 -0.006199 0.116297 -0.000008 0.000010 -0.000696 3 0.042224 0.030585 0.022027 0.000012 0.000026 0.500511 4 0.305743 -0.508952 0.120378 0.421773 -0.268725 0.000037 5 0.262927 0.029150 -0.545087 -0.268591 -0.421762 -0.000327 6 -0.446639 -0.356444 -0.016705 0.373142 0.287917 -0.164413 7 0.300443 -0.481324 -0.089851 -0.242470 0.406776 0.157892 8 0.277956 -0.048142 0.037122 -0.227772 0.038608 -0.437685 9 -0.260471 -0.392619 -0.323373 0.062794 -0.467329 -0.168200 10 -0.043851 -0.389729 0.280677 -0.364444 -0.157488 0.306787 11 -0.151661 0.170456 -0.355091 0.336493 -0.083277 0.363261 12 -0.484714 -0.113693 -0.280683 -0.436070 0.179158 -0.167245 13 0.215094 0.085959 -0.005280 0.185271 0.019192 -0.465534 14 0.279111 -0.077600 -0.522699 0.159961 0.466316 0.083050 12 13 14 0 -0.041799 -0.067804 0.034456 1 0.060729 -0.053426 -0.031456 2 0.045783 0.008959 0.073182 3 0.416362 0.672865 -0.337751 4 0.029774 -0.026169 -0.015414 5 0.022464 0.004421 0.035838 6 -0.046171 -0.041860 -0.284313 7 0.054430 -0.017894 0.273820 8 -0.045893 -0.018572 -0.765458 9 0.269741 -0.045258 0.092312 10 -0.499633 -0.004259 -0.152995 11 -0.605082 0.030381 -0.127224 12 -0.141875 0.222181 0.119183 13 -0.308202 0.684923 0.269413 14 0.082978 -0.122986 -0.015165 ----------- IR SPECTRUM ----------- Mode freq eps Int T**2 TX TY TZ cm**-1 L/(mol*cm) km/mol a.u. ---------------------------------------------------------------------------- 6: 1411.89 0.000735 3.72 0.000163 (-0.001597 -0.008137 -0.009685) 7: 1411.94 0.000436 2.20 0.000096 (-0.001157 -0.003252 0.009192) 8: 1411.99 0.000207 1.05 0.000046 (-0.000833 0.000200 -0.006713) 9: 1567.72 0.001550 7.83 0.000308 (-0.000000 -0.007232 0.016004) 10: 1567.76 0.000015 0.08 0.000003 (-0.000001 -0.000749 0.001567) 11: 2918.15 0.004195 21.20 0.000449 (-0.014320 0.013320 0.008134) 12: 2930.72 0.002517 12.72 0.000268 (-0.011427 0.008458 0.008116) 13: 2930.81 0.006524 32.97 0.000695 (-0.018466 -0.018797 0.000568) 14: 2931.00 0.006335 32.01 0.000674 ( 0.009269 -0.007394 0.023106) * The epsilon (eps) is given for a Dirac delta lineshape. ** The dipole moment derivative (T) already includes vibrational overlap. The first frequency considered to be a vibration is 6 The total number of vibrations considered is 9 -------------------------- THERMOCHEMISTRY AT 298.15K -------------------------- Temperature ... 298.15 K Pressure ... 1.00 atm Total Mass ... 16.04 AMU Throughout the following assumptions are being made: (1) The electronic state is orbitally nondegenerate (2) There are no thermally accessible electronically excited states (3) Hindered rotations indicated by low frequency modes are not treated as such but are treated as vibrations and this may cause some error (4) All equations used are the standard statistical mechanics equations for an ideal gas (5) All vibrations are strictly harmonic freq. 1411.89 E(vib) ... 0.00 freq. 1411.94 E(vib) ... 0.00 freq. 1411.99 E(vib) ... 0.00 freq. 1567.72 E(vib) ... 0.00 freq. 1567.76 E(vib) ... 0.00 freq. 2918.15 E(vib) ... 0.00 freq. 2930.72 E(vib) ... 0.00 freq. 2930.81 E(vib) ... 0.00 freq. 2931.00 E(vib) ... 0.00 ------------ INNER ENERGY ------------ The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans) E(el) - is the total energy from the electronic structure calculation = E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc) E(ZPE) - the the zero temperature vibrational energy from the frequency calculation E(vib) - the the finite temperature correction to E(ZPE) due to population of excited vibrational states E(rot) - is the rotational thermal energy E(trans)- is the translational thermal energy Summary of contributions to the inner energy U: Electronic energy ... -4.17445328 Eh Zero point energy ... 0.04347196 Eh 27.28 kcal/mol Thermal vibrational correction ... 0.00002868 Eh 0.02 kcal/mol Thermal rotational correction ... 0.00141627 Eh 0.89 kcal/mol Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol ----------------------------------------------------------------------- Total thermal energy -4.12812009 Eh Summary of corrections to the electronic energy: (perhaps to be used in another calculation) Total thermal correction 0.00286122 Eh 1.80 kcal/mol Non-thermal (ZPE) correction 0.04347196 Eh 27.28 kcal/mol ----------------------------------------------------------------------- Total correction 0.04633319 Eh 29.07 kcal/mol -------- ENTHALPY -------- The enthalpy is H = U + kB*T kB is Boltzmann's constant Total free energy ... -4.12812009 Eh Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol ----------------------------------------------------------------------- Total Enthalpy ... -4.12717588 Eh Note: Rotational entropy computed according to Herzberg Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945 Point Group: Td, Symmetry Number: 12 Rotational constants in cm-1: 5.186502 5.186421 5.186221 Vibrational entropy computed according to the QRRHO of S. Grimme Chem.Eur.J. 2012 18 9955 ------- ENTROPY ------- The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans)) S(el) - electronic entropy S(vib) - vibrational entropy S(rot) - rotational entropy S(trans)- translational entropy The entropies will be listed as multiplied by the temperature to get units of energy Electronic entropy ... 0.00000000 Eh 0.00 kcal/mol Vibrational entropy ... 0.00003278 Eh 0.02 kcal/mol Rotational entropy ... 0.00483337 Eh 3.03 kcal/mol Translational entropy ... 0.01627961 Eh 10.22 kcal/mol ----------------------------------------------------------------------- Final entropy term ... 0.02114577 Eh 13.27 kcal/mol In case the symmetry of your molecule has not been determined correctly or in case you have a reason to use a different symmetry number we print out the resulting rotational entropy values for sn=1,12 : -------------------------------------------------------- | sn= 1 | S(rot)= 0.00717958 Eh 4.51 kcal/mol| | sn= 2 | S(rot)= 0.00652512 Eh 4.09 kcal/mol| | sn= 3 | S(rot)= 0.00614229 Eh 3.85 kcal/mol| | sn= 4 | S(rot)= 0.00587066 Eh 3.68 kcal/mol| | sn= 5 | S(rot)= 0.00565998 Eh 3.55 kcal/mol| | sn= 6 | S(rot)= 0.00548783 Eh 3.44 kcal/mol| | sn= 7 | S(rot)= 0.00534228 Eh 3.35 kcal/mol| | sn= 8 | S(rot)= 0.00521621 Eh 3.27 kcal/mol| | sn= 9 | S(rot)= 0.00510500 Eh 3.20 kcal/mol| | sn=10 | S(rot)= 0.00500552 Eh 3.14 kcal/mol| | sn=11 | S(rot)= 0.00491553 Eh 3.08 kcal/mol| | sn=12 | S(rot)= 0.00483337 Eh 3.03 kcal/mol| -------------------------------------------------------- ------------------- GIBBS FREE ENERGY ------------------- The Gibbs free energy is G = H - T*S Total enthalpy ... -4.12717588 Eh Total entropy correction ... -0.02114577 Eh -13.27 kcal/mol ----------------------------------------------------------------------- Final Gibbs free energy ... -4.14832165 Eh For completeness - the Gibbs free energy minus the electronic energy G-E(el) ... 0.02613163 Eh 16.40 kcal/mol Timings for individual modules: Sum of individual times ... 63.124 sec (= 1.052 min) Numerical frequency calculation ... 63.060 sec (= 1.051 min) 99.9 % XTB module ... 0.064 sec (= 0.001 min) 0.1 % ****ORCA TERMINATED NORMALLY**** TOTAL RUN TIME: 0 days 0 hours 1 minutes 3 seconds 189 msec