***************** * O R C A * ***************** #, ### #### ##### ###### ########, ,,################,,,,, ,,#################################,, ,,##########################################,, ,#########################################, ''#####, ,#############################################,, '####, ,##################################################,,,,####, ,###########'''' ''''############################### ,#####'' ,,,,##########,,,, '''####''' '#### ,##' ,,,,###########################,,, '## ' ,,###'''' '''############,,, ,,##'' '''############,,,, ,,,,,,###'' ,#'' '''#######################''' ' ''''####'''' ,#######, #######, ,#######, ## ,#' '#, ## ## ,#' '#, #''# ###### ,####, ## ## ## ,#' ## #' '# # #' '# ## ## ####### ## ,######, #####, # # '#, ,#' ## ## '#, ,#' ,# #, ## #, ,# '#######' ## ## '#######' #' '# #####' # '####' ####################################################### # -***- # # Department of theory and spectroscopy # # Directorship and core code : Frank Neese # # Max Planck Institute fuer Kohlenforschung # # Kaiser Wilhelm Platz 1 # # D-45470 Muelheim/Ruhr # # Germany # # # # All rights reserved # # -***- # ####################################################### Program Version 5.0.2 - RELEASE - With contributions from (in alphabetic order): Daniel Aravena : Magnetic Suceptibility Michael Atanasov : Ab Initio Ligand Field Theory (pilot matlab implementation) Alexander A. Auer : GIAO ZORA, VPT2 properties, NMR spectrum Ute Becker : Parallelization Giovanni Bistoni : ED, misc. LED, open-shell LED, HFLD Martin Brehm : Molecular dynamics Dmytro Bykov : SCF Hessian Vijay G. Chilkuri : MRCI spin determinant printing, contributions to CSF-ICE Dipayan Datta : RHF DLPNO-CCSD density Achintya Kumar Dutta : EOM-CC, STEOM-CC Dmitry Ganyushin : Spin-Orbit,Spin-Spin,Magnetic field MRCI Miquel Garcia : C-PCM and meta-GGA Hessian, CC/C-PCM, Gaussian charge scheme Yang Guo : DLPNO-NEVPT2, F12-NEVPT2, CIM, IAO-localization Andreas Hansen : Spin unrestricted coupled pair/coupled cluster methods Benjamin Helmich-Paris : MC-RPA, TRAH-SCF, COSX integrals Lee Huntington : MR-EOM, pCC Robert Izsak : Overlap fitted RIJCOSX, COSX-SCS-MP3, EOM Marcus Kettner : VPT2 Christian Kollmar : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density, CASPT2, CASPT2-K Simone Kossmann : Meta GGA functionals, TD-DFT gradient, OOMP2, MP2 Hessian Martin Krupicka : Initial AUTO-CI Lucas Lang : DCDCAS Marvin Lechner : AUTO-CI (C++ implementation), FIC-MRCC Dagmar Lenk : GEPOL surface, SMD Dimitrios Liakos : Extrapolation schemes; Compound Job, initial MDCI parallelization Dimitrios Manganas : Further ROCIS development; embedding schemes Dimitrios Pantazis : SARC Basis sets Anastasios Papadopoulos: AUTO-CI, single reference methods and gradients Taras Petrenko : DFT Hessian,TD-DFT gradient, ASA, ECA, R-Raman, ABS, FL, XAS/XES, NRVS Peter Pinski : DLPNO-MP2, DLPNO-MP2 Gradient Christoph Reimann : Effective Core Potentials Marius Retegan : Local ZFS, SOC Christoph Riplinger : Optimizer, TS searches, QM/MM, DLPNO-CCSD(T), (RO)-DLPNO pert. Triples Tobias Risthaus : Range-separated hybrids, TD-DFT gradient, RPA, STAB Michael Roemelt : Original ROCIS implementation Masaaki Saitow : Open-shell DLPNO-CCSD energy and density Barbara Sandhoefer : DKH picture change effects Avijit Sen : IP-ROCIS Kantharuban Sivalingam : CASSCF convergence, NEVPT2, FIC-MRCI Bernardo de Souza : ESD, SOC TD-DFT Georgi Stoychev : AutoAux, RI-MP2 NMR, DLPNO-MP2 response Willem Van den Heuvel : Paramagnetic NMR Boris Wezisla : Elementary symmetry handling Frank Wennmohs : Technical directorship We gratefully acknowledge several colleagues who have allowed us to interface, adapt or use parts of their codes: Stefan Grimme, W. Hujo, H. Kruse, P. Pracht, : VdW corrections, initial TS optimization, C. Bannwarth, S. Ehlert DFT functionals, gCP, sTDA/sTD-DF Ed Valeev, F. Pavosevic, A. Kumar : LibInt (2-el integral package), F12 methods Garnet Chan, S. Sharma, J. Yang, R. Olivares : DMRG Ulf Ekstrom : XCFun DFT Library Mihaly Kallay : mrcc (arbitrary order and MRCC methods) Jiri Pittner, Ondrej Demel : Mk-CCSD Frank Weinhold : gennbo (NPA and NBO analysis) Christopher J. Cramer and Donald G. Truhlar : smd solvation model Lars Goerigk : TD-DFT with DH, B97 family of functionals V. Asgeirsson, H. Jonsson : NEB implementation FAccTs GmbH : IRC, NEB, NEB-TS, DLPNO-Multilevel, CI-OPT MM, QMMM, 2- and 3-layer-ONIOM, Crystal-QMMM, LR-CPCM, SF, NACMEs, symmetry and pop. for TD-DFT, nearIR, NL-DFT gradient (VV10), updates on ESD, ML-optimized integration grids S Lehtola, MJT Oliveira, MAL Marques : LibXC Library Liviu Ungur et al : ANISO software Your calculation uses the libint2 library for the computation of 2-el integrals For citations please refer to: http://libint.valeyev.net Your ORCA version has been built with support for libXC version: 5.1.0 For citations please refer to: https://tddft.org/programs/libxc/ This ORCA versions uses: CBLAS interface : Fast vector & matrix operations LAPACKE interface : Fast linear algebra routines SCALAPACK package : Parallel linear algebra routines Shared memory : Shared parallel matrices BLAS/LAPACK : OpenBLAS 0.3.15 USE64BITINT DYNAMIC_ARCH NO_AFFINITY SkylakeX SINGLE_THREADED Core in use : SkylakeX Copyright (c) 2011-2014, The OpenBLAS Project *************************************** The coordinates will be read from file: cmmd.xyz *************************************** Your calculation utilizes the semiempirical GFN2-xTB method Please cite in your paper: C. Bannwarth, Ehlert S., S. Grimme, J. Chem. Theory Comput., 15, (2019), 1652. ================================================================================ ================================================================================ WARNINGS Please study these warnings very carefully! ================================================================================ WARNING: Old DensityContainer found on disk! Will remove this file - If you want to keep old densities, please start your calculation with a different basename. WARNING: Gradients needed for Numerical Frequencies ===> : Setting RunTyp to EnGrad WARNING: Found dipole moment calculation with XTB calculation ===> : Switching off dipole moment calculation WARNING: TRAH-SCF for XTB is not implemented! ===> : Turning TRAH off! ================================================================================ INPUT FILE ================================================================================ NAME = cmmd.in | 1> #CMMDE generated Orca input file | 2> !XTB2 Numfreq | 3> %pal | 4> nprocs 1 | 5> end | 6> | 7> *xyzfile 0 1 cmmd.xyz | 8> | 9> %freq | 10> scalfreq 1 | 11> Temp 298.15 | 12> Pressure 1.0 | 13> end | 14> | 15> ****END OF INPUT**** ================================================================================ ******************************* * Energy+Gradient Calculation * ******************************* ----------------------------------------------------------- | ===================== | | x T B | | ===================== | | S. Grimme | | Mulliken Center for Theoretical Chemistry | | University of Bonn | | Aditya W. Sakti | | Departemen Kimia | | Universitas Pertamina | ----------------------------------------------------------- * xtb version 6.4.1 (060166e8e329d5f5f0e407f406ce482635821d54) compiled by '@Linux' on 12/03/2021 xtb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. xtb is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. Cite this work as: * C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, WIREs Comput. Mol. Sci., 2020, 11, e01493. DOI: 10.1002/wcms.1493 for GFN2-xTB: * C. Bannwarth, S. Ehlert and S. Grimme., J. Chem. Theory Comput., 2019, 15, 1652-1671. DOI: 10.1021/acs.jctc.8b01176 for GFN1-xTB: * S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989-2009. DOI: 10.1021/acs.jctc.7b00118 for GFN0-xTB: * P. Pracht, E. Caldeweyher, S. Ehlert, S. Grimme, ChemRxiv, 2019, preprint. DOI: 10.26434/chemrxiv.8326202.v1 for GFN-FF: * S. Spicher and S. Grimme, Angew. Chem. Int. Ed., 2020, 59, 15665-15673. DOI: 10.1002/anie.202004239 for ALPB and GBSA implicit solvation: * S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput., 2021, 17, 4250-4261. DOI: 10.1021/acs.jctc.1c00471 for DFT-D4: * E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215 * E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. DOI: 10.1063/1.5090222 * E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A for sTDA-xTB: * S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103. DOI: 10.1063/1.4959605 in the mass-spec context: * V. Asgeirsson, C. Bauer and S. Grimme, Chem. Sci., 2017, 8, 4879. DOI: 10.1039/c7sc00601b * J. Koopman and S. Grimme, ACS Omega 2019, 4, 12, 15120-15133. DOI: 10.1021/acsomega.9b02011 for metadynamics refer to: * S. Grimme, J. Chem. Theory Comput., 2019, 155, 2847-2862 DOI: 10.1021/acs.jctc.9b00143 for SPH calculations refer to: * S. Spicher and S. Grimme, J. Chem. Theory Comput., 2021, 17, 1701-1714 DOI: 10.1021/acs.jctc.0c01306 with help from (in alphabetical order) P. Atkinson, C. Bannwarth, F. Bohle, G. Brandenburg, E. Caldeweyher M. Checinski, S. Dohm, S. Ehlert, S. Ehrlich, I. Gerasimov, J. Koopman C. Lavigne, S. Lehtola, F. März, M. Müller, F. Musil, H. Neugebauer J. Pisarek, C. Plett, P. Pracht, J. Seibert, P. Shushkov, S. Spicher M. Stahn, M. Steiner, T. Strunk, J. Stückrath, T. Rose, and J. Unsleber * started run on 2022/04/28 at 11:27:40.328 ------------------------------------------------- | Calculation Setup | ------------------------------------------------- program call : /home/adit/opt/orca/otool_xtb cmmd_XTB.xyz --grad -c 0 -u 0 -P 1 --namespace cmmd --input cmmd_XTB.input.tmp --acc 1.000000 hostname : compute calculation namespace : cmmd coordinate file : cmmd_XTB.xyz number of atoms : 2 number of electrons : 12 charge : 0 spin : 0.0 first test random number : 0.84096853316258 ID Z sym. atoms 1 8 O 1, 2 ------------------------------------------------- | G F N 2 - x T B | ------------------------------------------------- Reference 10.1021/acs.jctc.8b01176 * Hamiltonian: H0-scaling (s, p, d) 1.850000 2.230000 2.230000 zeta-weighting 0.500000 * Dispersion: s8 2.700000 a1 0.520000 a2 5.000000 s9 5.000000 * Repulsion: kExp 1.500000 1.000000 rExp 1.000000 * Coulomb: alpha 2.000000 third order shell-resolved anisotropic true a3 3.000000 a5 4.000000 cn-shift 1.200000 cn-exp 4.000000 max-rad 5.000000 ................................................... : SETUP : :.................................................: : # basis functions 8 : : # atomic orbitals 8 : : # shells 4 : : # electrons 12 : : max. iterations 250 : : Hamiltonian GFN2-xTB : : restarted? false : : GBSA solvation false : : PC potential false : : electronic temp. 300.0000000 K : : accuracy 1.0000000 : : -> integral cutoff 0.2500000E+02 : : -> integral neglect 0.1000000E-07 : : -> SCF convergence 0.1000000E-05 Eh : : -> wf. convergence 0.1000000E-03 e : : Broyden damping 0.4000000 : ................................................... iter E dE RMSdq gap omega full diag 1 -7.9155572 -0.791556E+01 0.407E+00 0.00 0.0 T 2 -7.9155697 -0.125362E-04 0.246E+00 0.00 1.0 T 3 -7.9155792 -0.944533E-05 0.542E-02 0.00 1.3 T 4 -7.9155792 -0.302522E-08 0.166E-02 0.00 4.3 T 5 -7.9155792 -0.836504E-10 0.345E-05 0.00 2049.3 T 6 -7.9155792 0.355271E-14 0.271E-07 0.00 100000.0 T *** convergence criteria satisfied after 6 iterations *** # Occupation Energy/Eh Energy/eV ------------------------------------------------------------- 1 2.0000 -0.8284027 -22.5420 2 2.0000 -0.7371506 -20.0589 3 2.0000 -0.6631440 -18.0451 4 2.0000 -0.6631440 -18.0451 5 2.0000 -0.6374674 -17.3464 6 1.0000 -0.4399644 -11.9720 (HOMO) 7 1.0000 -0.4399644 -11.9720 (LUMO) 8 0.1444079 3.9295 ------------------------------------------------------------- HL-Gap 0.0000000 Eh 0.0000 eV Fermi-level -0.4399644 Eh -11.9720 eV SCC (total) 0 d, 0 h, 0 min, 0.050 sec SCC setup ... 0 min, 0.000 sec ( 0.151%) Dispersion ... 0 min, 0.000 sec ( 0.040%) classical contributions ... 0 min, 0.000 sec ( 0.017%) integral evaluation ... 0 min, 0.000 sec ( 0.294%) iterations ... 0 min, 0.050 sec ( 98.980%) molecular gradient ... 0 min, 0.000 sec ( 0.333%) printout ... 0 min, 0.000 sec ( 0.168%) ::::::::::::::::::::::::::::::::::::::::::::::::::::: :: SUMMARY :: ::::::::::::::::::::::::::::::::::::::::::::::::::::: :: total energy -7.906649846778 Eh :: :: gradient norm 0.018481649479 Eh/a0 :: :: HOMO-LUMO gap 0.000000000015 eV :: ::.................................................:: :: SCC energy -7.915579172539 Eh :: :: -> isotropic ES -0.000237652172 Eh :: :: -> anisotropic ES 0.003738001563 Eh :: :: -> anisotropic XC -0.007283115557 Eh :: :: -> dispersion -0.000194539012 Eh :: :: repulsion energy 0.008929325760 Eh :: :: add. restraining 0.000000000000 Eh :: :: total charge 0.000000000000 e :: ::::::::::::::::::::::::::::::::::::::::::::::::::::: Property printout bound to 'properties.out' ------------------------------------------------- | TOTAL ENERGY -7.906649846778 Eh | | GRADIENT NORM 0.018481649479 Eh/α | | HOMO-LUMO GAP 0.000000000015 eV | ------------------------------------------------- ------------------------------------------------------------------------ * finished run on 2022/04/28 at 11:27:40.387 ------------------------------------------------------------------------ total: * wall-time: 0 d, 0 h, 0 min, 0.059 sec * cpu-time: 0 d, 0 h, 0 min, 0.012 sec * ratio c/w: 0.196 speedup SCF: * wall-time: 0 d, 0 h, 0 min, 0.050 sec * cpu-time: 0 d, 0 h, 0 min, 0.003 sec * ratio c/w: 0.058 speedup ------------------------- -------------------- FINAL SINGLE POINT ENERGY -7.906649846780 ------------------------- -------------------- ---------------------------------------------------------------------------- ORCA NUMERICAL FREQUENCIES ---------------------------------------------------------------------------- Number of atoms ... 2 Central differences ... used Number of displacements ... 12 Numerical increment ... 5.000e-03 bohr IR-spectrum generation ... on Raman-spectrum generation ... off Surface Crossing Hessian ... off The output will be reduced. Please look at the following files: SCF program output ... >cmmd.lastscf Integral program output ... >cmmd.lastint Gradient program output ... >cmmd.lastgrad Dipole moment program output ... >cmmd.lastmom AutoCI program output ... >cmmd.lastautoci << Calculating on displaced geometry 1 (of 12) >> << Calculating on displaced geometry 2 (of 12) >> << Calculating on displaced geometry 3 (of 12) >> << Calculating on displaced geometry 4 (of 12) >> << Calculating on displaced geometry 5 (of 12) >> << Calculating on displaced geometry 6 (of 12) >> << Calculating on displaced geometry 7 (of 12) >> << Calculating on displaced geometry 8 (of 12) >> << Calculating on displaced geometry 9 (of 12) >> << Calculating on displaced geometry 10 (of 12) >> << Calculating on displaced geometry 11 (of 12) >> << Calculating on displaced geometry 12 (of 12) >> ----------------------- VIBRATIONAL FREQUENCIES ----------------------- Scaling factor for frequencies = 1.000000000 (already applied!) 0: 0.00 cm**-1 1: 0.00 cm**-1 2: 0.00 cm**-1 3: 0.00 cm**-1 4: 0.00 cm**-1 5: 1673.23 cm**-1 ------------ NORMAL MODES ------------ These modes are the cartesian displacements weighted by the diagonal matrix M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom Thus, these vectors are normalized but *not* orthogonal 0 1 2 3 4 5 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.707107 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3 0.000000 0.000000 0.000000 0.000000 0.000000 -0.707107 4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ----------- IR SPECTRUM ----------- Mode freq eps Int T**2 TX TY TZ cm**-1 L/(mol*cm) km/mol a.u. ---------------------------------------------------------------------------- 5: 1673.23 0.000000 0.00 0.000000 ( 0.000000 0.000000 0.000000) * The epsilon (eps) is given for a Dirac delta lineshape. ** The dipole moment derivative (T) already includes vibrational overlap. The first frequency considered to be a vibration is 5 The total number of vibrations considered is 1 -------------------------- THERMOCHEMISTRY AT 298.15K -------------------------- Temperature ... 298.15 K Pressure ... 1.00 atm Total Mass ... 32.00 AMU The molecule is recognized as being linear Throughout the following assumptions are being made: (1) The electronic state is orbitally nondegenerate (2) There are no thermally accessible electronically excited states (3) Hindered rotations indicated by low frequency modes are not treated as such but are treated as vibrations and this may cause some error (4) All equations used are the standard statistical mechanics equations for an ideal gas (5) All vibrations are strictly harmonic freq. 1673.23 E(vib) ... 0.00 ------------ INNER ENERGY ------------ The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans) E(el) - is the total energy from the electronic structure calculation = E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc) E(ZPE) - the the zero temperature vibrational energy from the frequency calculation E(vib) - the the finite temperature correction to E(ZPE) due to population of excited vibrational states E(rot) - is the rotational thermal energy E(trans)- is the translational thermal energy Summary of contributions to the inner energy U: Electronic energy ... -7.90664985 Eh Zero point energy ... 0.00381191 Eh 2.39 kcal/mol Thermal vibrational correction ... 0.00000238 Eh 0.00 kcal/mol Thermal rotational correction ... 0.00094418 Eh 0.59 kcal/mol Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol ----------------------------------------------------------------------- Total thermal energy -7.90047511 Eh Summary of corrections to the electronic energy: (perhaps to be used in another calculation) Total thermal correction 0.00236283 Eh 1.48 kcal/mol Non-thermal (ZPE) correction 0.00381191 Eh 2.39 kcal/mol ----------------------------------------------------------------------- Total correction 0.00617474 Eh 3.87 kcal/mol -------- ENTHALPY -------- The enthalpy is H = U + kB*T kB is Boltzmann's constant Total free energy ... -7.90047511 Eh Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol ----------------------------------------------------------------------- Total Enthalpy ... -7.89953090 Eh Note: Rotational entropy computed according to Herzberg Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945 Point Group: Dinfh, Symmetry Number: 2 Rotational constants in cm-1: 0.000000 1.459941 1.459941 Vibrational entropy computed according to the QRRHO of S. Grimme Chem.Eur.J. 2012 18 9955 ------- ENTROPY ------- The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans)) S(el) - electronic entropy S(vib) - vibrational entropy S(rot) - rotational entropy S(trans)- translational entropy The entropies will be listed as multiplied by the temperature to get units of energy Electronic entropy ... 0.00000000 Eh 0.00 kcal/mol Vibrational entropy ... 0.00000267 Eh 0.00 kcal/mol Rotational entropy ... 0.00496853 Eh 3.12 kcal/mol Translational entropy ... 0.01725741 Eh 10.83 kcal/mol ----------------------------------------------------------------------- Final entropy term ... 0.02222861 Eh 13.95 kcal/mol ------------------- GIBBS FREE ENERGY ------------------- The Gibbs free energy is G = H - T*S Total enthalpy ... -7.89953090 Eh Total entropy correction ... -0.02222861 Eh -13.95 kcal/mol ----------------------------------------------------------------------- Final Gibbs free energy ... -7.92175951 Eh For completeness - the Gibbs free energy minus the electronic energy G-E(el) ... -0.01510966 Eh -9.48 kcal/mol Timings for individual modules: Sum of individual times ... 30.549 sec (= 0.509 min) Numerical frequency calculation ... 30.380 sec (= 0.506 min) 99.4 % XTB module ... 0.169 sec (= 0.003 min) 0.6 % ****ORCA TERMINATED NORMALLY**** TOTAL RUN TIME: 0 days 0 hours 0 minutes 30 seconds 827 msec