You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
715 lines
34 KiB
715 lines
34 KiB
|
|
***************** |
|
* O R C A * |
|
***************** |
|
|
|
#, |
|
### |
|
#### |
|
##### |
|
###### |
|
########, |
|
,,################,,,,, |
|
,,#################################,, |
|
,,##########################################,, |
|
,#########################################, ''#####, |
|
,#############################################,, '####, |
|
,##################################################,,,,####, |
|
,###########'''' ''''############################### |
|
,#####'' ,,,,##########,,,, '''####''' '#### |
|
,##' ,,,,###########################,,, '## |
|
' ,,###'''' '''############,,, |
|
,,##'' '''############,,,, ,,,,,,###'' |
|
,#'' '''#######################''' |
|
' ''''####'''' |
|
,#######, #######, ,#######, ## |
|
,#' '#, ## ## ,#' '#, #''# ###### ,####, |
|
## ## ## ,#' ## #' '# # #' '# |
|
## ## ####### ## ,######, #####, # # |
|
'#, ,#' ## ## '#, ,#' ,# #, ## #, ,# |
|
'#######' ## ## '#######' #' '# #####' # '####' |
|
|
|
|
|
|
|
####################################################### |
|
# -***- # |
|
# Department of theory and spectroscopy # |
|
# Directorship and core code : Frank Neese # |
|
# Max Planck Institute fuer Kohlenforschung # |
|
# Kaiser Wilhelm Platz 1 # |
|
# D-45470 Muelheim/Ruhr # |
|
# Germany # |
|
# # |
|
# All rights reserved # |
|
# -***- # |
|
####################################################### |
|
|
|
|
|
Program Version 5.0.2 - RELEASE - |
|
|
|
|
|
With contributions from (in alphabetic order): |
|
Daniel Aravena : Magnetic Suceptibility |
|
Michael Atanasov : Ab Initio Ligand Field Theory (pilot matlab implementation) |
|
Alexander A. Auer : GIAO ZORA, VPT2 properties, NMR spectrum |
|
Ute Becker : Parallelization |
|
Giovanni Bistoni : ED, misc. LED, open-shell LED, HFLD |
|
Martin Brehm : Molecular dynamics |
|
Dmytro Bykov : SCF Hessian |
|
Vijay G. Chilkuri : MRCI spin determinant printing, contributions to CSF-ICE |
|
Dipayan Datta : RHF DLPNO-CCSD density |
|
Achintya Kumar Dutta : EOM-CC, STEOM-CC |
|
Dmitry Ganyushin : Spin-Orbit,Spin-Spin,Magnetic field MRCI |
|
Miquel Garcia : C-PCM and meta-GGA Hessian, CC/C-PCM, Gaussian charge scheme |
|
Yang Guo : DLPNO-NEVPT2, F12-NEVPT2, CIM, IAO-localization |
|
Andreas Hansen : Spin unrestricted coupled pair/coupled cluster methods |
|
Benjamin Helmich-Paris : MC-RPA, TRAH-SCF, COSX integrals |
|
Lee Huntington : MR-EOM, pCC |
|
Robert Izsak : Overlap fitted RIJCOSX, COSX-SCS-MP3, EOM |
|
Marcus Kettner : VPT2 |
|
Christian Kollmar : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density, CASPT2, CASPT2-K |
|
Simone Kossmann : Meta GGA functionals, TD-DFT gradient, OOMP2, MP2 Hessian |
|
Martin Krupicka : Initial AUTO-CI |
|
Lucas Lang : DCDCAS |
|
Marvin Lechner : AUTO-CI (C++ implementation), FIC-MRCC |
|
Dagmar Lenk : GEPOL surface, SMD |
|
Dimitrios Liakos : Extrapolation schemes; Compound Job, initial MDCI parallelization |
|
Dimitrios Manganas : Further ROCIS development; embedding schemes |
|
Dimitrios Pantazis : SARC Basis sets |
|
Anastasios Papadopoulos: AUTO-CI, single reference methods and gradients |
|
Taras Petrenko : DFT Hessian,TD-DFT gradient, ASA, ECA, R-Raman, ABS, FL, XAS/XES, NRVS |
|
Peter Pinski : DLPNO-MP2, DLPNO-MP2 Gradient |
|
Christoph Reimann : Effective Core Potentials |
|
Marius Retegan : Local ZFS, SOC |
|
Christoph Riplinger : Optimizer, TS searches, QM/MM, DLPNO-CCSD(T), (RO)-DLPNO pert. Triples |
|
Tobias Risthaus : Range-separated hybrids, TD-DFT gradient, RPA, STAB |
|
Michael Roemelt : Original ROCIS implementation |
|
Masaaki Saitow : Open-shell DLPNO-CCSD energy and density |
|
Barbara Sandhoefer : DKH picture change effects |
|
Avijit Sen : IP-ROCIS |
|
Kantharuban Sivalingam : CASSCF convergence, NEVPT2, FIC-MRCI |
|
Bernardo de Souza : ESD, SOC TD-DFT |
|
Georgi Stoychev : AutoAux, RI-MP2 NMR, DLPNO-MP2 response |
|
Willem Van den Heuvel : Paramagnetic NMR |
|
Boris Wezisla : Elementary symmetry handling |
|
Frank Wennmohs : Technical directorship |
|
|
|
|
|
We gratefully acknowledge several colleagues who have allowed us to |
|
interface, adapt or use parts of their codes: |
|
Stefan Grimme, W. Hujo, H. Kruse, P. Pracht, : VdW corrections, initial TS optimization, |
|
C. Bannwarth, S. Ehlert DFT functionals, gCP, sTDA/sTD-DF |
|
Ed Valeev, F. Pavosevic, A. Kumar : LibInt (2-el integral package), F12 methods |
|
Garnet Chan, S. Sharma, J. Yang, R. Olivares : DMRG |
|
Ulf Ekstrom : XCFun DFT Library |
|
Mihaly Kallay : mrcc (arbitrary order and MRCC methods) |
|
Jiri Pittner, Ondrej Demel : Mk-CCSD |
|
Frank Weinhold : gennbo (NPA and NBO analysis) |
|
Christopher J. Cramer and Donald G. Truhlar : smd solvation model |
|
Lars Goerigk : TD-DFT with DH, B97 family of functionals |
|
V. Asgeirsson, H. Jonsson : NEB implementation |
|
FAccTs GmbH : IRC, NEB, NEB-TS, DLPNO-Multilevel, CI-OPT |
|
MM, QMMM, 2- and 3-layer-ONIOM, Crystal-QMMM, |
|
LR-CPCM, SF, NACMEs, symmetry and pop. for TD-DFT, |
|
nearIR, NL-DFT gradient (VV10), updates on ESD, |
|
ML-optimized integration grids |
|
S Lehtola, MJT Oliveira, MAL Marques : LibXC Library |
|
Liviu Ungur et al : ANISO software |
|
|
|
|
|
Your calculation uses the libint2 library for the computation of 2-el integrals |
|
For citations please refer to: http://libint.valeyev.net |
|
|
|
Your ORCA version has been built with support for libXC version: 5.1.0 |
|
For citations please refer to: https://tddft.org/programs/libxc/ |
|
|
|
This ORCA versions uses: |
|
CBLAS interface : Fast vector & matrix operations |
|
LAPACKE interface : Fast linear algebra routines |
|
SCALAPACK package : Parallel linear algebra routines |
|
Shared memory : Shared parallel matrices |
|
BLAS/LAPACK : OpenBLAS 0.3.15 USE64BITINT DYNAMIC_ARCH NO_AFFINITY SkylakeX SINGLE_THREADED |
|
Core in use : SkylakeX |
|
Copyright (c) 2011-2014, The OpenBLAS Project |
|
|
|
|
|
|
|
|
|
*************************************** |
|
The coordinates will be read from file: cmmd.xyz |
|
*************************************** |
|
|
|
|
|
Your calculation utilizes the semiempirical GFN2-xTB method |
|
Please cite in your paper: |
|
C. Bannwarth, Ehlert S., S. Grimme, J. Chem. Theory Comput., 15, (2019), 1652. |
|
|
|
|
|
================================================================================ |
|
|
|
================================================================================ |
|
WARNINGS |
|
Please study these warnings very carefully! |
|
================================================================================ |
|
|
|
WARNING: Old DensityContainer found on disk! |
|
Will remove this file - |
|
If you want to keep old densities, please start your calculation with a different basename. |
|
|
|
WARNING: Gradients needed for Numerical Frequencies |
|
===> : Setting RunTyp to EnGrad |
|
|
|
WARNING: Found dipole moment calculation with XTB calculation |
|
===> : Switching off dipole moment calculation |
|
|
|
|
|
WARNING: TRAH-SCF for XTB is not implemented! |
|
===> : Turning TRAH off! |
|
|
|
================================================================================ |
|
INPUT FILE |
|
================================================================================ |
|
NAME = cmmd.in |
|
| 1> #CMMDE generated Orca input file |
|
| 2> !XTB2 Numfreq |
|
| 3> %pal |
|
| 4> nprocs 1 |
|
| 5> end |
|
| 6> |
|
| 7> *xyzfile 0 1 cmmd.xyz |
|
| 8> |
|
| 9> %freq |
|
| 10> scalfreq 1 |
|
| 11> Temp 298.15 |
|
| 12> Pressure 1.0 |
|
| 13> end |
|
| 14> |
|
| 15> ****END OF INPUT**** |
|
================================================================================ |
|
|
|
******************************* |
|
* Energy+Gradient Calculation * |
|
******************************* |
|
|
|
----------------------------------------------------------- |
|
| ===================== | |
|
| x T B | |
|
| ===================== | |
|
| S. Grimme | |
|
| Mulliken Center for Theoretical Chemistry | |
|
| University of Bonn | |
|
| Aditya W. Sakti | |
|
| Departemen Kimia | |
|
| Universitas Pertamina | |
|
----------------------------------------------------------- |
|
|
|
* xtb version 6.4.1 (060166e8e329d5f5f0e407f406ce482635821d54) compiled by '@Linux' on 12/03/2021 |
|
|
|
xtb is free software: you can redistribute it and/or modify it under |
|
the terms of the GNU Lesser General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
xtb is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU Lesser General Public License for more details. |
|
|
|
Cite this work as: |
|
* C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, |
|
J. Seibert, S. Spicher, S. Grimme, WIREs Comput. Mol. Sci., 2020, 11, |
|
e01493. DOI: 10.1002/wcms.1493 |
|
|
|
for GFN2-xTB: |
|
* C. Bannwarth, S. Ehlert and S. Grimme., J. Chem. Theory Comput., 2019, |
|
15, 1652-1671. DOI: 10.1021/acs.jctc.8b01176 |
|
for GFN1-xTB: |
|
* S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 2017, |
|
13, 1989-2009. DOI: 10.1021/acs.jctc.7b00118 |
|
for GFN0-xTB: |
|
* P. Pracht, E. Caldeweyher, S. Ehlert, S. Grimme, ChemRxiv, 2019, preprint. |
|
DOI: 10.26434/chemrxiv.8326202.v1 |
|
for GFN-FF: |
|
* S. Spicher and S. Grimme, Angew. Chem. Int. Ed., 2020, 59, 15665-15673. |
|
DOI: 10.1002/anie.202004239 |
|
|
|
for ALPB and GBSA implicit solvation: |
|
* S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput., |
|
2021, 17, 4250-4261. DOI: 10.1021/acs.jctc.1c00471 |
|
|
|
for DFT-D4: |
|
* E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, |
|
147, 034112. DOI: 10.1063/1.4993215 |
|
* E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, |
|
C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. |
|
DOI: 10.1063/1.5090222 |
|
* E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys. |
|
2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A |
|
|
|
for sTDA-xTB: |
|
* S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103. |
|
DOI: 10.1063/1.4959605 |
|
|
|
in the mass-spec context: |
|
* V. Asgeirsson, C. Bauer and S. Grimme, Chem. Sci., 2017, 8, 4879. |
|
DOI: 10.1039/c7sc00601b |
|
* J. Koopman and S. Grimme, ACS Omega 2019, 4, 12, 15120-15133. |
|
DOI: 10.1021/acsomega.9b02011 |
|
|
|
for metadynamics refer to: |
|
* S. Grimme, J. Chem. Theory Comput., 2019, 155, 2847-2862 |
|
DOI: 10.1021/acs.jctc.9b00143 |
|
|
|
for SPH calculations refer to: |
|
* S. Spicher and S. Grimme, J. Chem. Theory Comput., 2021, 17, 1701-1714 |
|
DOI: 10.1021/acs.jctc.0c01306 |
|
|
|
with help from (in alphabetical order) |
|
P. Atkinson, C. Bannwarth, F. Bohle, G. Brandenburg, E. Caldeweyher |
|
M. Checinski, S. Dohm, S. Ehlert, S. Ehrlich, I. Gerasimov, J. Koopman |
|
C. Lavigne, S. Lehtola, F. März, M. Müller, F. Musil, H. Neugebauer |
|
J. Pisarek, C. Plett, P. Pracht, J. Seibert, P. Shushkov, S. Spicher |
|
M. Stahn, M. Steiner, T. Strunk, J. Stückrath, T. Rose, and J. Unsleber |
|
|
|
* started run on 2022/04/28 at 11:27:15.724 |
|
|
|
------------------------------------------------- |
|
| Calculation Setup | |
|
------------------------------------------------- |
|
|
|
program call : /home/adit/opt/orca/otool_xtb cmmd_XTB.xyz --grad -c 0 -u 0 -P 1 --namespace cmmd --input cmmd_XTB.input.tmp --acc 1.000000 |
|
hostname : compute |
|
calculation namespace : cmmd |
|
coordinate file : cmmd_XTB.xyz |
|
number of atoms : 5 |
|
number of electrons : 8 |
|
charge : 0 |
|
spin : 0.0 |
|
first test random number : 0.45806096902679 |
|
|
|
ID Z sym. atoms |
|
1 6 C 1 |
|
2 1 H 2-5 |
|
|
|
------------------------------------------------- |
|
| G F N 2 - x T B | |
|
------------------------------------------------- |
|
|
|
Reference 10.1021/acs.jctc.8b01176 |
|
* Hamiltonian: |
|
H0-scaling (s, p, d) 1.850000 2.230000 2.230000 |
|
zeta-weighting 0.500000 |
|
* Dispersion: |
|
s8 2.700000 |
|
a1 0.520000 |
|
a2 5.000000 |
|
s9 5.000000 |
|
* Repulsion: |
|
kExp 1.500000 1.000000 |
|
rExp 1.000000 |
|
* Coulomb: |
|
alpha 2.000000 |
|
third order shell-resolved |
|
anisotropic true |
|
a3 3.000000 |
|
a5 4.000000 |
|
cn-shift 1.200000 |
|
cn-exp 4.000000 |
|
max-rad 5.000000 |
|
|
|
|
|
................................................... |
|
: SETUP : |
|
:.................................................: |
|
: # basis functions 8 : |
|
: # atomic orbitals 8 : |
|
: # shells 6 : |
|
: # electrons 8 : |
|
: max. iterations 250 : |
|
: Hamiltonian GFN2-xTB : |
|
: restarted? false : |
|
: GBSA solvation false : |
|
: PC potential false : |
|
: electronic temp. 300.0000000 K : |
|
: accuracy 1.0000000 : |
|
: -> integral cutoff 0.2500000E+02 : |
|
: -> integral neglect 0.1000000E-07 : |
|
: -> SCF convergence 0.1000000E-05 Eh : |
|
: -> wf. convergence 0.1000000E-03 e : |
|
: Broyden damping 0.4000000 : |
|
................................................... |
|
|
|
iter E dE RMSdq gap omega full diag |
|
1 -4.2239587 -0.422396E+01 0.248E+00 16.90 0.0 T |
|
2 -4.2374347 -0.134760E-01 0.912E-01 16.71 1.0 T |
|
3 -4.2375727 -0.137987E-03 0.506E-01 16.61 1.0 T |
|
4 -4.2376226 -0.499077E-04 0.100E-01 16.49 1.0 T |
|
5 -4.2376226 0.183268E-07 0.539E-03 16.49 8.3 T |
|
6 -4.2376227 -0.794093E-07 0.166E-04 16.49 269.4 T |
|
7 -4.2376227 -0.834559E-10 0.196E-06 16.49 22792.6 T |
|
|
|
*** convergence criteria satisfied after 7 iterations *** |
|
|
|
# Occupation Energy/Eh Energy/eV |
|
------------------------------------------------------------- |
|
1 2.0000 -0.5788386 -15.7510 |
|
2 2.0000 -0.4661696 -12.6851 |
|
3 2.0000 -0.4661655 -12.6850 |
|
4 2.0000 -0.4661594 -12.6848 (HOMO) |
|
5 0.1398593 3.8058 (LUMO) |
|
6 0.2020304 5.4975 |
|
7 0.2020678 5.4985 |
|
8 0.2021139 5.4998 |
|
------------------------------------------------------------- |
|
HL-Gap 0.6060187 Eh 16.4906 eV |
|
Fermi-level -0.1631500 Eh -4.4395 eV |
|
|
|
SCC (total) 0 d, 0 h, 0 min, 0.023 sec |
|
SCC setup ... 0 min, 0.000 sec ( 1.260%) |
|
Dispersion ... 0 min, 0.000 sec ( 0.106%) |
|
classical contributions ... 0 min, 0.000 sec ( 0.058%) |
|
integral evaluation ... 0 min, 0.001 sec ( 2.896%) |
|
iterations ... 0 min, 0.021 sec ( 94.189%) |
|
molecular gradient ... 0 min, 0.000 sec ( 0.973%) |
|
printout ... 0 min, 0.000 sec ( 0.466%) |
|
|
|
::::::::::::::::::::::::::::::::::::::::::::::::::::: |
|
:: SUMMARY :: |
|
::::::::::::::::::::::::::::::::::::::::::::::::::::: |
|
:: total energy -4.174453278189 Eh :: |
|
:: gradient norm 0.022735966218 Eh/a0 :: |
|
:: HOMO-LUMO gap 16.490609280094 eV :: |
|
::.................................................:: |
|
:: SCC energy -4.237622656391 Eh :: |
|
:: -> isotropic ES 0.001892323517 Eh :: |
|
:: -> anisotropic ES 0.002670073781 Eh :: |
|
:: -> anisotropic XC 0.004009252448 Eh :: |
|
:: -> dispersion -0.000663926968 Eh :: |
|
:: repulsion energy 0.063169371945 Eh :: |
|
:: add. restraining 0.000000000000 Eh :: |
|
:: total charge 0.000000000000 e :: |
|
::::::::::::::::::::::::::::::::::::::::::::::::::::: |
|
|
|
|
|
Property printout bound to 'properties.out' |
|
|
|
------------------------------------------------- |
|
| TOTAL ENERGY -4.174453278189 Eh | |
|
| GRADIENT NORM 0.022735966218 Eh/α | |
|
| HOMO-LUMO GAP 16.490609280094 eV | |
|
------------------------------------------------- |
|
|
|
------------------------------------------------------------------------ |
|
* finished run on 2022/04/28 at 11:27:15.762 |
|
------------------------------------------------------------------------ |
|
total: |
|
* wall-time: 0 d, 0 h, 0 min, 0.038 sec |
|
* cpu-time: 0 d, 0 h, 0 min, 0.009 sec |
|
* ratio c/w: 0.247 speedup |
|
SCF: |
|
* wall-time: 0 d, 0 h, 0 min, 0.023 sec |
|
* cpu-time: 0 d, 0 h, 0 min, 0.002 sec |
|
* ratio c/w: 0.094 speedup |
|
|
|
|
|
------------------------- -------------------- |
|
FINAL SINGLE POINT ENERGY -4.174453278190 |
|
------------------------- -------------------- |
|
|
|
|
|
---------------------------------------------------------------------------- |
|
ORCA NUMERICAL FREQUENCIES |
|
---------------------------------------------------------------------------- |
|
|
|
Number of atoms ... 5 |
|
Central differences ... used |
|
Number of displacements ... 30 |
|
Numerical increment ... 5.000e-03 bohr |
|
IR-spectrum generation ... on |
|
Raman-spectrum generation ... off |
|
Surface Crossing Hessian ... off |
|
|
|
The output will be reduced. Please look at the following files: |
|
SCF program output ... >cmmd.lastscf |
|
Integral program output ... >cmmd.lastint |
|
Gradient program output ... >cmmd.lastgrad |
|
Dipole moment program output ... >cmmd.lastmom |
|
AutoCI program output ... >cmmd.lastautoci |
|
|
|
<< Calculating on displaced geometry 1 (of 30) >> |
|
<< Calculating on displaced geometry 2 (of 30) >> |
|
<< Calculating on displaced geometry 3 (of 30) >> |
|
<< Calculating on displaced geometry 4 (of 30) >> |
|
<< Calculating on displaced geometry 5 (of 30) >> |
|
<< Calculating on displaced geometry 6 (of 30) >> |
|
<< Calculating on displaced geometry 7 (of 30) >> |
|
<< Calculating on displaced geometry 8 (of 30) >> |
|
<< Calculating on displaced geometry 9 (of 30) >> |
|
<< Calculating on displaced geometry 10 (of 30) >> |
|
<< Calculating on displaced geometry 11 (of 30) >> |
|
<< Calculating on displaced geometry 12 (of 30) >> |
|
<< Calculating on displaced geometry 13 (of 30) >> |
|
<< Calculating on displaced geometry 14 (of 30) >> |
|
<< Calculating on displaced geometry 15 (of 30) >> |
|
<< Calculating on displaced geometry 16 (of 30) >> |
|
<< Calculating on displaced geometry 17 (of 30) >> |
|
<< Calculating on displaced geometry 18 (of 30) >> |
|
<< Calculating on displaced geometry 19 (of 30) >> |
|
<< Calculating on displaced geometry 20 (of 30) >> |
|
<< Calculating on displaced geometry 21 (of 30) >> |
|
<< Calculating on displaced geometry 22 (of 30) >> |
|
<< Calculating on displaced geometry 23 (of 30) >> |
|
<< Calculating on displaced geometry 24 (of 30) >> |
|
<< Calculating on displaced geometry 25 (of 30) >> |
|
<< Calculating on displaced geometry 26 (of 30) >> |
|
<< Calculating on displaced geometry 27 (of 30) >> |
|
<< Calculating on displaced geometry 28 (of 30) >> |
|
<< Calculating on displaced geometry 29 (of 30) >> |
|
<< Calculating on displaced geometry 30 (of 30) >> |
|
|
|
----------------------- |
|
VIBRATIONAL FREQUENCIES |
|
----------------------- |
|
|
|
Scaling factor for frequencies = 1.000000000 (already applied!) |
|
|
|
0: 0.00 cm**-1 |
|
1: 0.00 cm**-1 |
|
2: 0.00 cm**-1 |
|
3: 0.00 cm**-1 |
|
4: 0.00 cm**-1 |
|
5: 0.00 cm**-1 |
|
6: 1411.89 cm**-1 |
|
7: 1411.94 cm**-1 |
|
8: 1411.99 cm**-1 |
|
9: 1567.72 cm**-1 |
|
10: 1567.76 cm**-1 |
|
11: 2918.15 cm**-1 |
|
12: 2930.72 cm**-1 |
|
13: 2930.81 cm**-1 |
|
14: 2931.00 cm**-1 |
|
|
|
|
|
------------ |
|
NORMAL MODES |
|
------------ |
|
|
|
These modes are the cartesian displacements weighted by the diagonal matrix |
|
M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom |
|
Thus, these vectors are normalized but *not* orthogonal |
|
|
|
0 1 2 3 4 5 |
|
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
13 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |
|
6 7 8 9 10 11 |
|
0 0.096478 0.069838 0.050248 0.000010 0.000019 -0.000055 |
|
1 -0.065244 0.108600 -0.025674 -0.000011 0.000021 0.000069 |
|
2 -0.056089 -0.006199 0.116297 -0.000008 0.000010 -0.000696 |
|
3 0.042224 0.030585 0.022027 0.000012 0.000026 0.500511 |
|
4 0.305743 -0.508952 0.120378 0.421773 -0.268725 0.000037 |
|
5 0.262927 0.029150 -0.545087 -0.268591 -0.421762 -0.000327 |
|
6 -0.446639 -0.356444 -0.016705 0.373142 0.287917 -0.164413 |
|
7 0.300443 -0.481324 -0.089851 -0.242470 0.406776 0.157892 |
|
8 0.277956 -0.048142 0.037122 -0.227772 0.038608 -0.437685 |
|
9 -0.260471 -0.392619 -0.323373 0.062794 -0.467329 -0.168200 |
|
10 -0.043851 -0.389729 0.280677 -0.364444 -0.157488 0.306787 |
|
11 -0.151661 0.170456 -0.355091 0.336493 -0.083277 0.363261 |
|
12 -0.484714 -0.113693 -0.280683 -0.436070 0.179158 -0.167245 |
|
13 0.215094 0.085959 -0.005280 0.185271 0.019192 -0.465534 |
|
14 0.279111 -0.077600 -0.522699 0.159961 0.466316 0.083050 |
|
12 13 14 |
|
0 -0.041799 -0.067804 0.034456 |
|
1 0.060729 -0.053426 -0.031456 |
|
2 0.045783 0.008959 0.073182 |
|
3 0.416362 0.672865 -0.337751 |
|
4 0.029774 -0.026169 -0.015414 |
|
5 0.022464 0.004421 0.035838 |
|
6 -0.046171 -0.041860 -0.284313 |
|
7 0.054430 -0.017894 0.273820 |
|
8 -0.045893 -0.018572 -0.765458 |
|
9 0.269741 -0.045258 0.092312 |
|
10 -0.499633 -0.004259 -0.152995 |
|
11 -0.605082 0.030381 -0.127224 |
|
12 -0.141875 0.222181 0.119183 |
|
13 -0.308202 0.684923 0.269413 |
|
14 0.082978 -0.122986 -0.015165 |
|
|
|
|
|
----------- |
|
IR SPECTRUM |
|
----------- |
|
|
|
Mode freq eps Int T**2 TX TY TZ |
|
cm**-1 L/(mol*cm) km/mol a.u. |
|
---------------------------------------------------------------------------- |
|
6: 1411.89 0.000735 3.72 0.000163 (-0.001597 -0.008137 -0.009685) |
|
7: 1411.94 0.000436 2.20 0.000096 (-0.001157 -0.003252 0.009192) |
|
8: 1411.99 0.000207 1.05 0.000046 (-0.000833 0.000200 -0.006713) |
|
9: 1567.72 0.001550 7.83 0.000308 (-0.000000 -0.007232 0.016004) |
|
10: 1567.76 0.000015 0.08 0.000003 (-0.000001 -0.000749 0.001567) |
|
11: 2918.15 0.004195 21.20 0.000449 (-0.014320 0.013320 0.008134) |
|
12: 2930.72 0.002517 12.72 0.000268 (-0.011427 0.008458 0.008116) |
|
13: 2930.81 0.006524 32.97 0.000695 (-0.018466 -0.018797 0.000568) |
|
14: 2931.00 0.006335 32.01 0.000674 ( 0.009269 -0.007394 0.023106) |
|
|
|
* The epsilon (eps) is given for a Dirac delta lineshape. |
|
** The dipole moment derivative (T) already includes vibrational overlap. |
|
|
|
The first frequency considered to be a vibration is 6 |
|
The total number of vibrations considered is 9 |
|
|
|
|
|
-------------------------- |
|
THERMOCHEMISTRY AT 298.15K |
|
-------------------------- |
|
|
|
Temperature ... 298.15 K |
|
Pressure ... 1.00 atm |
|
Total Mass ... 16.04 AMU |
|
|
|
Throughout the following assumptions are being made: |
|
(1) The electronic state is orbitally nondegenerate |
|
(2) There are no thermally accessible electronically excited states |
|
(3) Hindered rotations indicated by low frequency modes are not |
|
treated as such but are treated as vibrations and this may |
|
cause some error |
|
(4) All equations used are the standard statistical mechanics |
|
equations for an ideal gas |
|
(5) All vibrations are strictly harmonic |
|
|
|
freq. 1411.89 E(vib) ... 0.00 |
|
freq. 1411.94 E(vib) ... 0.00 |
|
freq. 1411.99 E(vib) ... 0.00 |
|
freq. 1567.72 E(vib) ... 0.00 |
|
freq. 1567.76 E(vib) ... 0.00 |
|
freq. 2918.15 E(vib) ... 0.00 |
|
freq. 2930.72 E(vib) ... 0.00 |
|
freq. 2930.81 E(vib) ... 0.00 |
|
freq. 2931.00 E(vib) ... 0.00 |
|
|
|
------------ |
|
INNER ENERGY |
|
------------ |
|
|
|
The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans) |
|
E(el) - is the total energy from the electronic structure calculation |
|
= E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc) |
|
E(ZPE) - the the zero temperature vibrational energy from the frequency calculation |
|
E(vib) - the the finite temperature correction to E(ZPE) due to population |
|
of excited vibrational states |
|
E(rot) - is the rotational thermal energy |
|
E(trans)- is the translational thermal energy |
|
|
|
Summary of contributions to the inner energy U: |
|
Electronic energy ... -4.17445328 Eh |
|
Zero point energy ... 0.04347196 Eh 27.28 kcal/mol |
|
Thermal vibrational correction ... 0.00002868 Eh 0.02 kcal/mol |
|
Thermal rotational correction ... 0.00141627 Eh 0.89 kcal/mol |
|
Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol |
|
----------------------------------------------------------------------- |
|
Total thermal energy -4.12812009 Eh |
|
|
|
|
|
Summary of corrections to the electronic energy: |
|
(perhaps to be used in another calculation) |
|
Total thermal correction 0.00286122 Eh 1.80 kcal/mol |
|
Non-thermal (ZPE) correction 0.04347196 Eh 27.28 kcal/mol |
|
----------------------------------------------------------------------- |
|
Total correction 0.04633319 Eh 29.07 kcal/mol |
|
|
|
|
|
-------- |
|
ENTHALPY |
|
-------- |
|
|
|
The enthalpy is H = U + kB*T |
|
kB is Boltzmann's constant |
|
Total free energy ... -4.12812009 Eh |
|
Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol |
|
----------------------------------------------------------------------- |
|
Total Enthalpy ... -4.12717588 Eh |
|
|
|
|
|
Note: Rotational entropy computed according to Herzberg |
|
Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945 |
|
Point Group: Td, Symmetry Number: 12 |
|
Rotational constants in cm-1: 5.186502 5.186421 5.186221 |
|
|
|
Vibrational entropy computed according to the QRRHO of S. Grimme |
|
Chem.Eur.J. 2012 18 9955 |
|
|
|
|
|
------- |
|
ENTROPY |
|
------- |
|
|
|
The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans)) |
|
S(el) - electronic entropy |
|
S(vib) - vibrational entropy |
|
S(rot) - rotational entropy |
|
S(trans)- translational entropy |
|
The entropies will be listed as multiplied by the temperature to get |
|
units of energy |
|
|
|
Electronic entropy ... 0.00000000 Eh 0.00 kcal/mol |
|
Vibrational entropy ... 0.00003278 Eh 0.02 kcal/mol |
|
Rotational entropy ... 0.00483337 Eh 3.03 kcal/mol |
|
Translational entropy ... 0.01627961 Eh 10.22 kcal/mol |
|
----------------------------------------------------------------------- |
|
Final entropy term ... 0.02114577 Eh 13.27 kcal/mol |
|
|
|
In case the symmetry of your molecule has not been determined correctly |
|
or in case you have a reason to use a different symmetry number we print |
|
out the resulting rotational entropy values for sn=1,12 : |
|
-------------------------------------------------------- |
|
| sn= 1 | S(rot)= 0.00717958 Eh 4.51 kcal/mol| |
|
| sn= 2 | S(rot)= 0.00652512 Eh 4.09 kcal/mol| |
|
| sn= 3 | S(rot)= 0.00614229 Eh 3.85 kcal/mol| |
|
| sn= 4 | S(rot)= 0.00587066 Eh 3.68 kcal/mol| |
|
| sn= 5 | S(rot)= 0.00565998 Eh 3.55 kcal/mol| |
|
| sn= 6 | S(rot)= 0.00548783 Eh 3.44 kcal/mol| |
|
| sn= 7 | S(rot)= 0.00534228 Eh 3.35 kcal/mol| |
|
| sn= 8 | S(rot)= 0.00521621 Eh 3.27 kcal/mol| |
|
| sn= 9 | S(rot)= 0.00510500 Eh 3.20 kcal/mol| |
|
| sn=10 | S(rot)= 0.00500552 Eh 3.14 kcal/mol| |
|
| sn=11 | S(rot)= 0.00491553 Eh 3.08 kcal/mol| |
|
| sn=12 | S(rot)= 0.00483337 Eh 3.03 kcal/mol| |
|
-------------------------------------------------------- |
|
|
|
|
|
------------------- |
|
GIBBS FREE ENERGY |
|
------------------- |
|
|
|
The Gibbs free energy is G = H - T*S |
|
|
|
Total enthalpy ... -4.12717588 Eh |
|
Total entropy correction ... -0.02114577 Eh -13.27 kcal/mol |
|
----------------------------------------------------------------------- |
|
Final Gibbs free energy ... -4.14832165 Eh |
|
|
|
For completeness - the Gibbs free energy minus the electronic energy |
|
G-E(el) ... 0.02613163 Eh 16.40 kcal/mol |
|
|
|
|
|
|
|
Timings for individual modules: |
|
|
|
Sum of individual times ... 63.124 sec (= 1.052 min) |
|
Numerical frequency calculation ... 63.060 sec (= 1.051 min) 99.9 % |
|
XTB module ... 0.064 sec (= 0.001 min) 0.1 % |
|
****ORCA TERMINATED NORMALLY**** |
|
TOTAL RUN TIME: 0 days 0 hours 1 minutes 3 seconds 189 msec
|
|
|