/// \author Rifki Sadikin , Indonesian Institute of Sciences /// \date Nov 8, 2018 #include #include "PoissonSolver3DCylindricalGPU.h" const float PoissonSolver3DCylindricalGPU::fgkTPCZ0 = 249.7; ///< nominal gating grid position const float PoissonSolver3DCylindricalGPU::fgkIFCRadius = 83.5; ///< radius which renders the "18 rod manifold" best -> compare calc. of Jim Thomas const float PoissonSolver3DCylindricalGPU::fgkOFCRadius = 254.5; ///< Mean Radius of the Outer Field Cage (252.55 min, 256.45 max) (cm) const float PoissonSolver3DCylindricalGPU::fgkZOffSet = 0.2; ///< Offset from CE: calculate all distortions closer to CE as if at this point const float PoissonSolver3DCylindricalGPU::fgkCathodeV = -100000.0; ///< Cathode Voltage (volts) const float PoissonSolver3DCylindricalGPU::fgkGG = -70.0; ///< Gating Grid voltage (volts) const float PoissonSolver3DCylindricalGPU::fgkdvdE = 0.0024; ///< [cm/V] drift velocity dependency on the E field (from Magboltz for NeCO2N2 at standard environment) const float PoissonSolver3DCylindricalGPU::fgkEM = -1.602176487e-19 / 9.10938215e-31; ///< charge/mass in [C/kg] const float PoissonSolver3DCylindricalGPU::fgke0 = 8.854187817e-12; ///< vacuum permittivity [A·s/(V·m)] float PoissonSolver3DCylindricalGPU::fgExactErr = 1e-4; float PoissonSolver3DCylindricalGPU::fgConvergenceError = 1e-3; /// constructor /// PoissonSolver3DCylindricalGPU::PoissonSolver3DCylindricalGPU() { fErrorConvF = new float [fMgParameters.nMGCycle]; fErrorExactF = new float [fMgParameters.nMGCycle]; } PoissonSolver3DCylindricalGPU::PoissonSolver3DCylindricalGPU(int nRRow, int nZColumn, int nPhiSlice) { fNRRow = nRRow; fNZColumn = nZColumn; fPhiSlice = nPhiSlice; fErrorConvF = new float [fMgParameters.nMGCycle]; fErrorExactF = new float [fMgParameters.nMGCycle]; } /// destructor PoissonSolver3DCylindricalGPU::~PoissonSolver3DCylindricalGPU() { delete fErrorConvF; delete fErrorExactF; delete fExactSolutionF; } /// function overriding void PoissonSolver3DCylindricalGPU::PoissonSolver3D(float *matricesV, float *matricesCharge, int nRRow, int nZColumn, int phiSlice, int maxIteration, int symmetry) { fNRRow = nRRow; fNZColumn = nZColumn; fPhiSlice = phiSlice; PoissonMultiGrid3D2D(matricesV, matricesCharge, nRRow, nZColumn, phiSlice, symmetry); } // method to do multigrid3d2d void PoissonSolver3DCylindricalGPU::PoissonMultiGrid3D2D(float *VPotential, float * RhoChargeDensities, int nRRow, int nZColumn, int phiSlice, int symmetry) { const float gridSizeR = (PoissonSolver3DCylindricalGPU::fgkOFCRadius-PoissonSolver3DCylindricalGPU::fgkIFCRadius) / (nRRow-1); // h_{r} const float gridSizePhi = M_PI/phiSlice; // h_{phi} const float gridSizeZ = PoissonSolver3DCylindricalGPU::fgkTPCZ0 / (nZColumn-1) ; // h_{z} const float ratioPhi = gridSizeR*gridSizeR / (gridSizePhi*gridSizePhi) ; // ratio_{phi} = gridsize_{r} / gridsize_{phi} const float ratioZ = gridSizeR*gridSizeR / (gridSizeZ*gridSizeZ) ; // ratio_{Z} = gridsize_{r} / gridsize_{z} const float convErr = PoissonSolver3DCylindricalGPU::fgConvergenceError; const float IFCRadius = PoissonSolver3DCylindricalGPU::fgkIFCRadius; int fparamsize = 8; float * fparam = new float[fparamsize]; fparam[0] = gridSizeR; fparam[1] = gridSizePhi; fparam[2] = gridSizeZ; fparam[3] = ratioPhi; fparam[4] = ratioZ; fparam[5] = convErr; fparam[6] = IFCRadius; int iparamsize = 4; int * iparam = new int[iparamsize]; iparam[0] = fMgParameters.nPre; iparam[1] = fMgParameters.nPost; iparam[2] = fMgParameters.maxLoop; iparam[3] = fMgParameters.nMGCycle; if (fMgParameters.cycleType == kFCycle) { if (fExactPresent == true) { PoissonMultigrid3DSemiCoarseningGPUErrorFCycle(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fExactPresent, fErrorConvF, fErrorExactF, fExactSolutionF); } else { PoissonMultigrid3DSemiCoarseningGPUErrorFCycle(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fExactPresent, fErrorConvF, fErrorExactF, NULL); } } else if (fMgParameters.cycleType == kWCycle) { PoissonMultigrid3DSemiCoarseningGPUErrorWCycle(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fErrorConvF, fErrorExactF, fExactSolutionF); } else { if (fExactPresent == true) { PoissonMultigrid3DSemiCoarseningGPUError(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fExactPresent, fErrorConvF, fErrorExactF, fExactSolutionF); } else { PoissonMultigrid3DSemiCoarseningGPUError(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fExactPresent, fErrorConvF, fErrorExactF, NULL); } } fIterations = iparam[3]; delete[] fparam; delete[] iparam; } void PoissonSolver3DCylindricalGPU::SetExactSolution(float*exactSolution,int nRRow, int nZColumn, int phiSlice) { fNRRow = nRRow; fNZColumn = nZColumn; fPhiSlice = phiSlice; fExactSolutionF = new float[fNRRow * fPhiSlice,fNZColumn]; fExactPresent = true; fMaxExact = 0.0;; for (int i=0;i fMaxExact) fMaxExact = abs(fExactSolutionF[i]); } }