#include #include #include #include #include #include "PoissonSolver3DGPUTest.h" /// /// DoPoissonSolverExperiments /// /// dibuat oleh: Rifki Sadikin (rifki.sadikin@lipi.go.id) /// tanggal: 7 November 2018 void DoPoissonSolverExperiment(const int kRows, const int kColumns, const int kPhiSlices, const int kIterations, const int kSymmetry) { int kPhiSlicesPerSector = kPhiSlices/18; const float gridSizeR = (fgkOFCRadius-fgkIFCRadius) / (kRows-1) ; const float gridSizeZ = fgkTPCZ0 / (kColumns-1) ; const float gridSizePhi = (M_PI * 2)/ ( 18.0 * kPhiSlicesPerSector); int size = kRows * kColumns * kPhiSlices; float * VPotential = new float[size]; float * VPotentialExact = new float[size]; float * RhoCharge = new float[size]; float * errorConv = new float[200]; float * errorExact = new float[200]; InitVoltandCharge3D(VPotentialExact,VPotential,RhoCharge,kRows,kColumns,kPhiSlices,gridSizeR,gridSizeZ,gridSizePhi); /** const float ratioPhi = gridSizeR*gridSizeR / (gridSizePhi*gridSizePhi) ; // ratio_{phi} = gridsize_{r} / gridsize_{phi} const float ratioZ = gridSizeR*gridSizeR / (gridSizeZ*gridSizeZ) ; // ratio_{Z} = gridsize_{r} / gridsize_{z} const float convErr = fgConvergenceError; const float IFCRadius = fgkIFCRadius; const int fparamsize = 8; float * fparam = new float[fparamsize]; fparam[0] = gridSizeR; fparam[1] = gridSizePhi; fparam[2] = gridSizeZ; fparam[3] = ratioPhi; fparam[4] = ratioZ; fparam[5] = convErr; fparam[6] = IFCRadius; int iparamsize = 4; int * iparam = new int[iparamsize]; iparam[0] = 2;//nPre iparam[1] = 2;//nPost; iparam[2] = 6;//maxLoop; iparam[3] = 200; //nMGCycle; for (int k=0;kSetExactSolution(VPotentialExact,kRows,kColumns, kPhiSlices); // Case 1. Set the strategy as multigrid, fullmultigrid, and full 3d poissonSolver->SetStrategy(PoissonSolver3DCylindricalGPU::kMultiGrid); poissonSolver->SetCycleType(PoissonSolver3DCylindricalGPU::kFCycle); // TStopwatch w; std::clock_t start,stop; double duration; start = std::clock(); //w.Start(); poissonSolver->PoissonSolver3D(VPotential,RhoCharge,kRows,kColumns,kPhiSlices, kIterations,kSymmetry) ; //w.Stop(); stop = std::clock(); /** for (int k=0;k<1;k++) { for (int i=0;ifIterations << '\n'; std::cout<<"Iterasi\tError Convergen\t\tError Absolut \n"; std::cout<< std::scientific; for (int i=0;ifIterations;i++) { std::cout<<"[" << i << "]:\t" << poissonSolver->GetErrorConv(i) << "\t" << poissonSolver->GetErrorExact(i) << '\n' << std::scientific; } delete poissonSolver; delete VPotential; delete VPotentialExact; delete RhoCharge; } // set init void InitVoltandCharge3D(float * VPotentialExact,float *VPotential,float * RhoCharge,const int kRows, const int kColumns,const int kPhiSlices,float gridSizeR,float gridSizeZ,float gridSizePhi) { //TFormula vTestFunction1("f1", "[0]*(x^4 - 338.0 *x^3 + 21250.75 * x^2)*cos([1]* y)^2*exp(-1* [2] * z^2)"); //TFormula rhoTestFunction1("ff1", "[0]*(((16.0 * x^2 - 9.0 * 338.0 * x + 4.0*21250.75) *cos([1] * y)^2 * exp(-1 *[2]*z^2)) - ((x^2 - 338.0 * x + 21250.75) * 2 * [1]^2 * cos(2 * [1] * y) * exp(-1 *[2]*z^2)) + ((x^4 - 338.0 * x^3 + 21250.75 * x^2) * cos([1] * y)^2 * (4*[2]^2*z^2 - 2 * [2]) * exp(-1 *[2]*z^2)))"); double rlist[kRows], zedlist[kColumns] , philist[kPhiSlices]; float phi0,radius0,z0; double a,b,c; a = 1e-7; b = 0.5; c = 1e-4; int index; // list points on grid in cm for ( int k = 0 ; k < kPhiSlices ; k++ ) philist[k] = gridSizePhi * k; for ( int i = 0 ; i < kRows ; i++ ) rlist[i] = fgkIFCRadius + i*gridSizeR ; for ( int j = 0 ; j < kColumns ; j++ ) zedlist[j] = j * gridSizeZ ; for ( int k = 0 ; k < kPhiSlices ; k++ ) { phi0 = philist[k]; for ( int i = 0 ; i < kRows ; i++ ) { radius0 = rlist[i] ; for ( int j = 0 ; j < kColumns ; j++ ) { index = k * kRows * kColumns + i * kColumns + j; z0 = zedlist[j]; VPotentialExact[index] = TestFunction1PotentialEval(a,b,c,radius0,phi0,z0); RhoCharge[index] = -1 * TestFunction1ChargeEval(a,b,c,radius0,phi0,z0); if (j == 0) VPotential[index] = VPotentialExact[index]; else if (j == kColumns-1) VPotential[index] = VPotentialExact[index]; else if (i == 0) VPotential[index] = VPotentialExact[index]; else if (i == kRows - 1) VPotential[index] = VPotentialExact[index]; else VPotential[index ] = 0.0; } // end j } // end i } // end phi } // float TestFunction1PotentialEval(double a, double b, double c, float radius0,float phi0,float z0) { //TFormula vTestFunction1("f1", "[0]*(x^4 - 338.0 *x^3 + 21250.75 * x^2)*cos([1]* y)^2*exp(-1* [2] * z^2)"); float ret = a * (pow(radius0,4) - 338.0 * pow(radius0,3) + 21250.75 * pow(radius0,2)) * pow(cos(b*phi0),2) * exp ( -1 * c * z0*z0); return ret; } // float TestFunction1ChargeEval(double a, double b, double c, float radius0,float phi0,float z0) { //TFormula rhoTestFunction1("ff1", "[0]*(((16.0 * x^2 - 9.0 * 338.0 * x + 4.0*21250.75) *cos([1] * y)^2 * exp(-1 *[2]*z^2)) - ((x^2 - 338.0 * x + 21250.75) * 2 * [1]^2 * cos(2 * [1] * y) * exp(-1 *[2]*z^2)) + ((x^4 - 338.0 * x^3 + 21250.75 * x^2) * cos([1] * y)^2 * (4*[2]^2*z^2 - 2 * [2]) * exp(-1 *[2]*z^2)))"); float ret = a * (((16.0 * pow(radius0,2) - 9.0 * 338.0 * radius0 + 4.0*21250.75 ) * pow(cos (b * phi0),2) *exp(-1 * c * z0 * z0) ) - ((pow(radius0,2) - 338.0 * radius0 + 21250.75) *2 * b*b* cos(2 * b * phi0) * exp(-1 * c *z0 * z0) ) + ((pow(radius0,4) - 338.0 * pow(radius0,3) + 21250.75 * pow(radius0,2)) * pow(cos(b * phi0),2) * (4.0 *c*c *z0*z0 - 2 *c) * exp(-1 * c * z0 * z0))) ; return ret; } // testing int main() { DoPoissonSolverExperiment(17, 17, 18, 200, 0); std::cout << "\n"; DoPoissonSolverExperiment(33, 33, 36, 200, 0); std::cout << "\n"; DoPoissonSolverExperiment(65, 65, 72, 200, 0); std::cout << "\n"; DoPoissonSolverExperiment(129, 129, 144, 200, 0); std::cout << "\n"; DoPoissonSolverExperiment(257, 257, 288, 200, 0); std::cout << "\n"; return 0; }