thermodynamical state of the layer. Therefore the above relations
thermodynamical state of the layer. Therefore the above relations
define the one-zone-stability equations of state
define the one-zone-stability equations of state
$S_{\mathrm{dyn}},\,S_{\mathrm{sec}}$
$S_{\mathrm{dyn}},\,S_{\mathrm{sec}}$
and $S_{\mathrm{vib}}$. See Fig. \ref{FigVibStab} for a picture of
and $S_{\mathrm{vib}}$. See == [@fig:FigVibStab] == Fig. \ref{fig:FigVibStab} for a picture of
$S_{\mathrm{vib}}$. Regions of secular instability are
$S_{\mathrm{vib}}$. Regions of secular instability are
listed in Table 1.
listed in Table 1.
<!-- calculate height and width of picture manually in inch, using evince -> Properties
<!-- calculate height and width of picture manually in inch, using evince -> Properties
create label for \ref{FigVibStab} using #FigVibStab
create label for \ref{FigVibStab} using #FigVibStab
-->
-->
![Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability.](Figure/icml_numpapers.eps){#FigVibStab width=3.43in height=2.71in}
![Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability.](Figure/icml_numpapers.eps){#fig:FigVibStab width=3.43in height=2.71in}