{The stability equations of state are calculated for solar composition and are displayed in the domain $-14 \leq \lg \rho / \mathrm{[g\, cm^{-3}]} \leq 0 $, $ 8.8 \leq \lg e / \mathrm{[erg\, g^{-1}]} \leq 17.7$. These displays may be used to determine the one-zone stability of layers in stellar or planetary structure models by directly reading off the value of the stability equations for the thermodynamic state of these layers, specified by state quantities as density $\rho$, temperature $T$ or specific internal energy $e$. Regions of instability in the $(\rho,e)$-plane are described and related to the underlying microphysical processes.}
{The stability equations of state are calculated for solar composition and are displayed in the domain $-14 \leq \lg \rho / \mathrm{[g\, cm^{-3}]} \leq 0 $, $ 8.8 \leq \lg e / \mathrm{[erg\, g^{-1}]} \leq 17.7$. These displays may be used to determine the one-zone stability of layers in stellar or planetary structure models by directly reading off the value of the stability equations for the thermodynamic state of these layers, specified by state quantities as density $\rho$, temperature $T$ or specific internal energy $e$. Regions of instability in the $(\rho,e)$-plane are described and related to the underlying microphysical processes.}
{Vibrational instability is found to be a common phenomenon at temperatures lower than the second He ionisation zone. The $\kappa$-mechanism is widespread under 'cool' conditions.}
{Vibrational instability is found to be a common phenomenon at temperatures lower than the second He ionisation zone. The $\kappa$-mechanism is widespread under 'cool' conditions.}
keywords: giant planet formation -- $\kappa$-mechanism -- stability of gas spheres
keywords: giant planet formation -- $\kappa$-mechanism -- stability of gas spheres