PoissonSolver3DCylindricalGPU adalah pustaka yang dikembangkan untuk menyelesaikan persamaan Poisson 3 dimensi dalam sistem koordinat silinder dengan akselerator GPU
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

128 lines
5.4 KiB

/// \author Rifki Sadikin <rifki.sadikin@lipi.go.id>, Indonesian Institute of Sciences
/// \date Nov 8, 2018
#include <math.h>
#include "PoissonSolver3DCylindricalGPU.h"
const float PoissonSolver3DCylindricalGPU::fgkTPCZ0 = 249.7; ///< nominal gating grid position
const float PoissonSolver3DCylindricalGPU::fgkIFCRadius = 83.5; ///< radius which renders the "18 rod manifold" best -> compare calc. of Jim Thomas
const float PoissonSolver3DCylindricalGPU::fgkOFCRadius = 254.5; ///< Mean Radius of the Outer Field Cage (252.55 min, 256.45 max) (cm)
const float PoissonSolver3DCylindricalGPU::fgkZOffSet = 0.2; ///< Offset from CE: calculate all distortions closer to CE as if at this point
const float PoissonSolver3DCylindricalGPU::fgkCathodeV = -100000.0; ///< Cathode Voltage (volts)
const float PoissonSolver3DCylindricalGPU::fgkGG = -70.0; ///< Gating Grid voltage (volts)
const float PoissonSolver3DCylindricalGPU::fgkdvdE = 0.0024; ///< [cm/V] drift velocity dependency on the E field (from Magboltz for NeCO2N2 at standard environment)
const float PoissonSolver3DCylindricalGPU::fgkEM = -1.602176487e-19 / 9.10938215e-31; ///< charge/mass in [C/kg]
const float PoissonSolver3DCylindricalGPU::fgke0 = 8.854187817e-12; ///< vacuum permittivity [A·s/(V·m)]
float PoissonSolver3DCylindricalGPU::fgExactErr = 1e-4;
float PoissonSolver3DCylindricalGPU::fgConvergenceError = 1e-3;
/// constructor
///
PoissonSolver3DCylindricalGPU::PoissonSolver3DCylindricalGPU() {
fErrorConvF = new float [fMgParameters.nMGCycle];
fErrorExactF = new float [fMgParameters.nMGCycle];
}
PoissonSolver3DCylindricalGPU::PoissonSolver3DCylindricalGPU(int nRRow, int nZColumn, int nPhiSlice) {
fNRRow = nRRow;
fNZColumn = nZColumn;
fPhiSlice = nPhiSlice;
fErrorConvF = new float [fMgParameters.nMGCycle];
fErrorExactF = new float [fMgParameters.nMGCycle];
}
/// destructor
PoissonSolver3DCylindricalGPU::~PoissonSolver3DCylindricalGPU() {
delete fErrorConvF;
delete fErrorExactF;
delete fExactSolutionF;
}
/// function overriding
void PoissonSolver3DCylindricalGPU::PoissonSolver3D(float *matricesV, float *matricesCharge,
int nRRow, int nZColumn, int phiSlice, int maxIteration,
int symmetry) {
fNRRow = nRRow;
fNZColumn = nZColumn;
fPhiSlice = phiSlice;
PoissonMultiGrid3D2D(matricesV, matricesCharge, nRRow, nZColumn, phiSlice, symmetry);
}
// method to do multigrid3d2d
void PoissonSolver3DCylindricalGPU::PoissonMultiGrid3D2D(float *VPotential, float * RhoChargeDensities, int nRRow,
int nZColumn, int phiSlice, int symmetry) {
const float gridSizeR = (PoissonSolver3DCylindricalGPU::fgkOFCRadius-PoissonSolver3DCylindricalGPU::fgkIFCRadius) / (nRRow-1); // h_{r}
const float gridSizePhi = M_PI/phiSlice; // h_{phi}
const float gridSizeZ = PoissonSolver3DCylindricalGPU::fgkTPCZ0 / (nZColumn-1) ; // h_{z}
const float ratioPhi = gridSizeR*gridSizeR / (gridSizePhi*gridSizePhi) ; // ratio_{phi} = gridsize_{r} / gridsize_{phi}
const float ratioZ = gridSizeR*gridSizeR / (gridSizeZ*gridSizeZ) ; // ratio_{Z} = gridsize_{r} / gridsize_{z}
const float convErr = PoissonSolver3DCylindricalGPU::fgConvergenceError;
const float IFCRadius = PoissonSolver3DCylindricalGPU::fgkIFCRadius;
int fparamsize = 8;
float * fparam = new float[fparamsize];
fparam[0] = gridSizeR;
fparam[1] = gridSizePhi;
fparam[2] = gridSizeZ;
fparam[3] = ratioPhi;
fparam[4] = ratioZ;
fparam[5] = convErr;
fparam[6] = IFCRadius;
int iparamsize = 4;
int * iparam = new int[iparamsize];
iparam[0] = fMgParameters.nPre;
iparam[1] = fMgParameters.nPost;
iparam[2] = fMgParameters.maxLoop;
iparam[3] = fMgParameters.nMGCycle;
if (fMgParameters.cycleType == kFCycle)
{
if (fExactPresent == true) {
PoissonMultigrid3DSemiCoarseningGPUErrorFCycle(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fExactPresent, fErrorConvF, fErrorExactF, fExactSolutionF);
} else {
PoissonMultigrid3DSemiCoarseningGPUErrorFCycle(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fExactPresent, fErrorConvF, fErrorExactF, NULL);
}
} else if (fMgParameters.cycleType == kWCycle)
{
PoissonMultigrid3DSemiCoarseningGPUErrorWCycle(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fErrorConvF, fErrorExactF, fExactSolutionF);
} else
{
if (fExactPresent == true) {
PoissonMultigrid3DSemiCoarseningGPUError(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fExactPresent, fErrorConvF, fErrorExactF, fExactSolutionF);
} else {
PoissonMultigrid3DSemiCoarseningGPUError(VPotential, RhoChargeDensities,nRRow, nZColumn,phiSlice,symmetry, fparam, iparam, fExactPresent, fErrorConvF, fErrorExactF, NULL);
}
}
fIterations = iparam[3];
delete[] fparam;
delete[] iparam;
}
void PoissonSolver3DCylindricalGPU::SetExactSolution(float*exactSolution,int nRRow, int nZColumn, int phiSlice) {
fNRRow = nRRow;
fNZColumn = nZColumn;
fPhiSlice = phiSlice;
fExactSolutionF = new float[fNRRow * fPhiSlice,fNZColumn];
fExactPresent = true;
fMaxExact = 0.0;;
for (int i=0;i<nRRow*nZColumn*phiSlice;i++) {
fExactSolutionF[i] = exactSolution[i];
if (abs(fExactSolutionF[i]) > fMaxExact) fMaxExact = abs(fExactSolutionF[i]);
}
}